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Chapter 1

2-Dimensional Patterns Generation Problems

§ 1.1 Introduction

Many systems have been studied as models for spatial pattern formation in
biology, chemistry, engineering and physics. Lattices play important roles
in modeling underlying spatial structures. Notable examples include models
arising from biology[7, 8, 21, 22, 23, 33, 34, 35], chemical reaction and phase
transitions [4, 5, 11, 12, 13, 14, 24, 41, 43], image processing and pattern
recognition [11, 12, 15, 16, 17, 18, 19, 25, 40], as well as materials science[9,
20, 26]. Stationary patterns play a critical role in investigating of the long
time behavior of related dynamical systems. In general, multiple stationary
patterns may induce complicated phenomena of such systems.

In Lattice Dynamical Systems(LDS), especially Cellular Neural Networks
(CNN), the set of global stationary solutions (global patterns) has received
considerable attention in recent years (e.g.[1, 2, 6, 10, 27, 28, 29, 30, 31, 32,
36, 37]). When the mutual interaction between states of a system is local, the
state at each lattice point is influenced only by its finitely many neighborhood
states. The admissible (or allowable ) local patterns are introduced and
defined on a certain finite lattice. The admissible global patterns on the entire
lattice space are then glued together from those admissible local patterns.
More precisely, let S be a finite set of p elements (symbols, colors or letters
of an alphabet). Where Zd denotes the integer lattice on Rd, and d ≥ 1 is a
positive integer representing the lattice dimension. Then, function U : Zd →
S is called a global pattern. For each α ∈ Zd, we write U(α) as uα. The set
of all patterns U : Zd → S is denoted by

Σd
p ≡ SZ

d

,

i.e., Σd
p is the set of all patterns with p different colors in d-dimensional

lattice. As for local patterns, i.e., functions defined on (finite) sublattices,
for a given d-tuple N = (N1, N2, · · · , Nd) of positive integers, let

ZN = {(α1, α2, · · · , αd) : 1 ≤ αk ≤ Nk, 1 ≤ k ≤ d}
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2 Pattern Generation Problems

be an N1 × N2 × · · ·Nd finite rectangular lattice. Denoted by Ñ ≥ N if
Ñk ≥ Nk for all 1 ≤ k ≤ d. The set of all local patterns defined on ZN is
denoted by

ΣN ≡ ΣN,p ≡ {U |ZN
: U ∈ Σd

p}.
Under many circumstances, only a(proper) subset B of ΣN is admissible
(allowable or feasible). In this case, local patterns in B are called basic
patterns and B is called the basic set. In a one dimensional case, S consists
of letters of an alphabet, and B is also called a set of allowable words of
length N.

Consider a fixed finite lattice ZN and a given basic set B ⊂ ΣN . For
larger finite lattice Z eN ⊃ ZN , the set of all local patterns on Z eN which can
be generated by B is denoted as Σ eN (B). Indeed, Σ eN (B) can be characterized
by

Σ eN (B) = { U ∈ Σ eN : Uα+N = VN for any α ∈ Zd with Zα+N ⊂ Z eN
and some VN ∈ B},

where
α + N = {(α1 + β1, · · · , αd + βd) : (β1, · · · , βd) ∈ N},

and
Uα+N = VN means uα+β = vβ for each β ∈ ZN .

Similarly, the set of all global patterns which can be generated by B is denoted
by

Σ(B) = {U ∈ Σd
p : Uα+N = VN for any α ∈ Zd with some VN ∈ B}.

The following questions arise :

(1) Can we find a systematic means of constructing Σ eN (B) from B
for Z eN ⊃ ZN?

(2) What is the complexity (or spatial entropy) of {
∑ eN(B)} eN≥N ?

The spatial entropy h(B) of Σ(B) is defined as follows :
Let

(1.1.1) Γ eN(B) = card(Σ eN(B)),

the number of distinct patterns in Σ eN (B). The spatial entropy h(B) is defined
as

(1.1.2) h(B) = limeN→∞

1

Ñ1 · · · Ñd

log Γ eN (B),
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where Ñ = (Ñ1, Ñ2, ..., Ñd) be a d-tuple positive integers, which is well-
defined and exists (e.g. [13]). The spatial entropy, which is an analogue to
topological entropy in dynamical system, has been used to measure a kind
of complexity in LDS (e.g. [13], [42] ).

In a one dimensional case, the above two questions can be answered by
using transition matrix. Indeed, for a given basic set B, we can associate the
transition matrix T(B) to B. Then the spatial entropy h(B) = log λ, where
λ is the largest eigenvalue of T(B) (e.g. [29, 41]). On the other hand, for
higher dimensional cases, constructing Σ eN (B) systematically and computing

Γ eN(B) effectively for a large Ñ are extremely difficult.
In the two dimensional case, Chow et al. [13] estimated lower bounds

of the spatial entropy for some problems in LDS. Later, using a ”building
block” technique, Juang and Lin [29] studied the patterns generation and
obtained lower bounds of the spatial entropy for CNN with square-cross or
diagonal-cross templates. For CNN with general templates, Hsu et al [27] in-
vestigated the generation of admissible local patterns and obtained the basic
set for any parameter, i.e., the first step in studying the patterns generation
problem. Meanwhile, given a set of symbols S and a pair consisting of a hori-
zontal transition matrix H and a vertical transition matrix V, Juang et al [30]

defined m-th order transition matrices T
(m)
H,V and T̄

(m)
H,V for each m ≥ 1 and, in

doing so, obtained the recursion formulas for both T
(m)
H,V and T̄

(m)
H,V . Further-

more, they proved that T
(m)
H,V and T̄

(m)
H,V have the same maximum eigenvalue

λm and spatial entropy h(H, V ) = lim
m→∞

log λm

m
. For a certain class of H,V, the

recursion formulas for T
(m)
H,V and T̄

(m)
H,V yield recursion formulas for λm explic-

itly and the exact entropy. On the other hand, for the patterns generation
problem Lin and Yang [37] worked on the 3-cell L-shaped lattice, i.e., N=

. They developed an algorithm to investigate how patterns are generated
on larger lattices from smaller one. Their algorithm treated all patterns in
Σ eN (B) as entries and arranged them in a ”counting matrix” M eN(B). A good
arrangement of M eN (B) implies an easier extension to MeeN (B) for a larger

lattice
˜̃
N ⊃ Ñ and effective counting of the number of elements in Σ eN(B).

Upper and lower bounds of spatial entropy were also obtained. Next, there
are some relations with matrix shift [13], that details will appear in section
1.3.4.

Motivated by the counting matrix MN(B) of [37] and the recursion formu-
las for transition matrices in [30], this work introduces the ”ordering matrix”
X2 for Σ2ℓ×2ℓ to study the patterns generation and obtain recursion formu-
las for Xn for Σ2ℓ×nℓ where ℓ ≥ 1 is a fixed positive integer and n ≥ 2.
The recursion formulas for Xn imply the recursion formula for the associated
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transition matrices Tn(B) of Σ2ℓ×nℓ(B), i.e., a generalization of the recursion

formulas in [30]. Notably, a different ordering matrix X̃2 for Σ2ℓ×2ℓ induces

different recursion formulas of X̃n for Σ2ℓ×nℓ and T̃n(B). Among them, X2

defined in (1.2.9) yields a simple recursion formula (1.3.16) and rewriting
rule (1.3.14), which enabling us to compute the maximum eigenvalue of Tn

effectively. The computations or estimates of λn are interesting problems in
linear algebra and numerical linear algebra. Owing to the similarity prop-
erty of (1.3.16) or (1.3.14) of transition matrices {Tn}∞n=2, we show that for
a certain class of B, λn satisfies certain recursion relations and h(B) can be
computed explicitly.

In d ≥ 3, the structure of ordering matrix and transition matrices has
been explored, and it can be found in [3].

The rest of this paper is organized as follows. Section 1.2 describes a
two dimensional case by thoroughly investigating Σ2×2 and introducing the
ordering matrix X2 of patterns in Σ2×2. The ordering matrix Xn on Σ2×n

is then constructed from X2 recursively. Finally, section 1.3 derives higher
order transition matrices Tn from T2 and computes λn explicitly for a certain
type of T2.

§ 1.2 Two Dimensional Patterns

This section describes two dimensional patterns generation. For clarity, we
begin by the studying two symbols, i.e., S = {0, 1}. On a fixed finite lattice
Zm1×m2 , we first give a ordering χ = χm1×m2 on Zm1×m2 by

(1.2.1) χ((α1, α2)) = m2(α1 − 1) + α2 ,

i.e.,

(1.2.2)

m2 2m2 m1m2

...
...

...
...

1 m2 + 1 (m1 − 1)m2 + 1

The ordering χ of (1.2.1) on Zm1×m2 can now be passed to Σm1×m2 . Indeed,
for each U = (uα1,α2) ∈ Σm1×m2 , define

(1.2.3)

χ(U) ≡ χm1×m2(U)

= 1 +
m1∑

α1=1

m2∑
α2=1

uα1α22
m2(m1−α1)+(m2−α2).

Obviously, there is an one-to-one correspondence between local patterns in
Σm1×m2 and positive integers in the set N2m1m2 = {k ∈ N : 1 ≤ k ≤
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2m1,m2}, where N is the set of positive integers. Therefore, U is referred
to herein as the χ(U)-th element in Σm1×m2 . By identifying the pictorial
patterns by numbers χ(U), it becomes highly effective in proving theorems
since computations can now be performed on χ(U). In a two dimensional
case, we will keep the ordering (1.2.1)∼ (1.2.3) χ on Zm1×m2 and Σm1×m2 ,
respectively.

1.2.1 Ordering Matrices

For 1 × n pattern U = (uk), 1 ≤ k ≤ n in Σ1×n, as in (1.2.3), U is assigned
the number

(1.2.4) i = χ(U) = 1 +
n∑

k=1

uk2
(n−k).

As denoted by the 1 × n column pattern xn;i,

(1.2.5) xn;i =




un

...
u1


 or

un

...
u1

.

In particular, when n = 2, as denoted by xi = x2;i,

i = 1 + 2u1 + u2

and

(1.2.6) xi =

[
u2

u1

]
or

u2

u1
.

A 2× 2 pattern U = (uα1α2) can now be obtained by a horizontal direct sum
of two 1 × 2 patterns, i.e.,

(1.2.7)

xi1i2 ≡ xi1 ⊕ xi2

≡
[

u12 u22

u11 u21

]
or

u12 u22

u11 u21
,

where

(1.2.8) ik = 1 + 2uk1 + uk2, 1 ≤ k ≤ 2.
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Therefore, the complete set of all 16(= 22×2) 2 × 2 patterns in Σ2×2 can be
listed by a 4 × 4 matrix X2 = [xi1i2] with 2 × 2 pattern xi1i2 as its entries in

(1.2.9)

0

0
 0


0
 0

0


1
0


0


0


1

0


1
 1

0
1


1


0


0

1


0


1


0


0


0

1


0
0


1


1
1
1


1
 1
 0
0

1


1

1


1


0


0
1


0


0

0


0


1


0


1


1


1


0


0

1


1


1

0


1


1
0


1


1

1


0

0


1

0


1

1


0

1


1

1


0

1


1

0


0

0


It is easy to verify that

(1.2.10) χ(xi1i2) = 4(i1 − 1) + i2,

i.e, we are counting local patterns in Σ2×2 by going through each row succes-
sively in Table (1.2.9). Correspondingly, X2 can be referred to as an ordering
matrix for Σ2×2. Similarly, a 2 × 2 pattern can also be viewed as a vertical
direct sum of two 2 × 1 patterns, i.e,

(1.2.11) yj1j2 = yj1 ⊕ yj2,

where

yjl
=
[

u1l u2l

]
or u1l u2l ,

and

(1.2.12) jl = 1 + 2u1l + u2l,
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1 ≤ l ≤ 2. A 4 × 4 matrix Y2 = [yj1j2] can also be obtained for Σ2×2. i.e.,
we have

(1.2.13)

1


0
0

0

0
 0


0
 0

0


0
0


0


1


0


1


1


0


0
 0


0


1


1


1

0


0

1


1


0


1


0
1


0


1


1


0

1


1


1


0


0


0

0


0
0


1


1
1
1


1
 1
 1
1

1


1

1


1


0


0
0


0


1

0


0


1


0


0


1


1


0


1

0


0


1

0


1


1
1


1


1

1


The relation between X2 and Y2 must be explored. Indeed, from (1.2.12),
ukl can be solved in terms of jl, i.e., we have

(1.2.14) u1l = [
jl − 1

2
]

and

(1.2.15) u2l = jl − 1 − 2[
jl − 1

2
],

where [ ] is the Gauss symbol, i.e., [r] is the largest integer which is equal
to or less than r. From (1.2.8), (1.2.12), (1.2.14) and (1.2.15), we have the
following relations between indices i1, i2 and j1, j2.

(1.2.16) j1 = 1 +
2∑

k=1

[
ik − 1

2
] 22−k,

(1.2.17) j2 = 1 +
2∑

k=1

{ ik − 1 − 2 [
ik − 1

2
] } 22−k,

and

(1.2.18) i1 = 1 +

2∑

l=1

[
jl − 1

2
] 22−l,
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(1.2.19) i2 = 1 +

2∑

l=1

{ jl − 1 − 2 [
jl − 1

2
] } 22−l.

From (1.2.16) and (1.2.17), (1.2.9) or X2 can also be represented by yj1j2 as

(1.2.20) X2 =




y11 y12 y21 y22

y13 y14 y23 y24

y31 y32 y41 y42

y33 y34 y43 y44


 .

In (1.2.20), the indices j1j2 are arranged by two Z-maps successively, as

(1.2.21)




1 −→ 2
ւ

3 −→ 4




i.e., the path from 1 to 4 in (1.2.21) is Z shaped and is then called a Z-map.
More precisely, X2 can be decomposed by

(1.2.22) X2 =

[
Y2;1 Y2;2

Y2;3 Y2;4

]

and

(1.2.23) Y2;k =

[
yk1 yk2

yk3 yk4

]
.

Where, X2 is arranged by a Z-map (Y2;k) in (1.2.22) and each Y2;k is also
arranged by a Z-map (ykl) in (1.2.23). Therefore, the indices of y in (1.2.20)
consist of two Z-maps.

The expression (1.2.20) of all local patterns in Σ2×2 by y can be extended
to all patterns in Σ2×n for any n ≥ 3. Indeed, a local pattern U in Σ2×n can
be viewed as the horizontal direct sum of two 1 × n local patterns, i.e., U1

and U2, and also the vertical direct sums of n many 2× 1 local patterns. As
in (1.2.9), all patterns in Σ2×n can be arranged by the ordering matrix

(1.2.24) Xn =
[

xn;i1i2

]
,

a 2n × 2n matrix with entry xn;i1i2 = xn;i1 ⊕ xn;i2, where χ(U1) = i1 and
χ(U2) = i2 as in (1.2.4) and (1.2.5), 1 ≤ i1, i2 ≤ 2n. On the other hand, for
two 2 × 2 patterns yj1j2 and yj2j3, we can attach them together to become a
2 × 3 pattern yj1j2j3 , since the second row in yj1j2 and the first row of yj2j3

are identical, i.e.,

(1.2.25)
yj1j2j3 ≡ yj1j2 ⊕̂ yj2j3

≡ yj1 ⊕ yj2 ⊕ yj3,
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Herein, a wedge direct sum ⊕̂ is used for 2 × 2 patterns whenever they can
be attached together. In this way, a 2 × n pattern yj1···jn

is obtained from
n − 1 many 2 × 2 patterns yj1j2, yj2j3 , · · · , yjn−1jn

by

(1.2.26)
yj1···jn

≡ yj1j2 ⊕̂ yj2j3 ⊕̂ · · · ⊕̂ yjn−1jn

≡ yj1 ⊕ yj2 ⊕ · · · ⊕ yjn
,

where 1 ≤ jk ≤ 4, and 1 ≤ k ≤ n. Now, Xn in y expression can be obtained
as follows.

Theorem 1.1. For any n ≥ 2, Σ2×n = {yj1···jn
}, where yj1···jn

is given in
(1.2.26). Furthermore, the ordering matrix Xn can be decomposed by n

Z-maps successively as

(1.2.27) Xn =

[
Yn;1 Yn;2

Yn;3 Yn;4

]
,

(1.2.28) Yn;j1···jk
=

[
Yn;j1···jk1 Yn;j1···jk2

Yn;j1···jk3 Yn;j1···jk4

]
,

for 1 ≤ k ≤ n − 2, and

(1.2.29) Yn;j1···jn−1 =

[
yj1···jn−11 yj1···jn−12

yj1···jn−13 yj1···jn−14

]
.

Proof. From (1.2.12), (1.2.14) and (1.2.15), we have following table.

jl 1 2 3 4

u1l 0 0 1 1

u2l 0 1 0 1

Table 2.1

For any n ≥ 2, by (1.2.12),(1.2.14) and (1.2.15), it is easy to generalize
(1.2.18) and (1.2.19) to

(1.2.30) in;1 = 1 +

n∑

l=1

[
jl − 1

2
]2n−l,
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and

(1.2.31) in;2 = 1 +
n∑

l=1

{jl − 1 − 2[
jl − 1

2
]}2n−l.

From (1.2.30) and (1.2.31), we have

(1.2.32) in+1;1 = 2in;1 − 1 + [
jn+1 − 1

2
],

and

(1.2.33) in+1;2 = 2in;2 − 1 + {jn+1 − 1 − 2[
jn+1 − 1

2
]}.

Now, by induction on n the theorem follows from last two formulas and the
table 2.1. The proof is complete.

Remark 1.2. The ordering matrix on Σm×n can also be introduced accord-
ingly. However, when spatial entropy h(B) of Σ(B) is computed, only λn,
the largest eigenvalue of Tn(B) must be known. Section 1.3 provides further
details.

1.2.2 More Symbols on Larger Lattices

The idea introduced in the last section can be generalized to more symbols
on Zm×m, where m ≥ 3. We first treat a case when m is even. Indeed,
assume that m = 2ℓ, ℓ ≥ 2 and S contains p elements. Now, we introduce
the ordering matrices X2 = [xi1i2 ] and Y2 = [yj1j2] to Σ2ℓ×2ℓ as follows. Let
q = pℓ2, X2 can be expressed by yj1j2, i.e.,

(1.2.34) X2 =




Y1 Y2 · · · Yq

Yq+1 Yq+2 · · · Y2q

...
...

. . .
...

Y(q−1)q+1 Y(q−1)q+2 · · · Yq2




q×q

,

with

(1.2.35) Yj1 =




yj1,1 · · · yj1,q

yj1,q+1 · · · yj1,2q

...
. . .

...
yj1,(q−1)q+1 · · · yj1,q2




q×q

.

Now, we can state recursion formulas for higher ordering matrix Xn =
[xn;i1i2 ]qn×qn as follows and omit the proof for brevity.
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Theorem 1.3. Suppose we have p symbols, p ≥ 2 and let q = pℓ2, ℓ ≥ 2.
For any n ≥ 2, Σ2ℓ×nℓ = {yj1j2···jn

}, where yj1j2···jn
≡ yj1j2⊕̂yj2j3⊕̂ · · · ⊕̂yjn−1jn

,
1 ≤ jk ≤ q2 and 1 ≤ k ≤ n. Furthermore, the ordering matrix Xn can be
decomposed by n Z-maps successively as

(1.2.36) Xn =




Yn;1 Yn;2 · · · Yn;q

Yn;q+1 Yn;q+2 · · · Yn;2q

...
...

. . .
...

Yn;(q−1)q+1 Yn;(q−1)q+2 · · · Yn;q2




(1.2.37)

Yn;j1···jk
=




Yn;j1,··· ,jk,1 Yn;j1,··· ,jk,2 · · · Yn;j1,··· ,jk,q

Yn;j1,··· ,jk,q+1 Yn;j1,··· ,jk,q+2 · · · Yn;j1,··· ,jk,2q

...
...

. . .
...

Yn;j1,··· ,jk,(q−1)q+1 Yn;j1,··· ,jk,(q−1)q+2 · · · Yn;j1,··· ,jk,q2




for 1 ≤ k ≤ n − 2,

(1.2.38)

Yn;j1···jn−1 =




yj1,··· ,jn−1,1 yj1,··· ,jn−1,2 · · · yj1,··· ,jn−1,q

yj1,··· ,jn−1,q+1 yj1,··· ,jn−1,q+2 · · · yj1,··· ,jn−1,2q

...
...

. . .
...

yj1,··· ,jn−1,(q−1)q+1 yj1,··· ,jn−1,(q−1)q+2 · · · yj1,··· ,jn−1,q2


 .

§ 1.3 Transition matrices

This section derives the transition matrices Tn for a given basic set B. For
simplicity, the study of two symbols S = {0, 1} on 2 × 2 lattice Z2×2 in
two dimensional lattice space Z2 is of particular focus. The results can be
extended to general cases.

1.3.1 2 × 2 systems

Given a basic set B ⊂ Σ2×2, horizontal and vertical transition matrices H2

and V2 can be defined by

(1.3.1) H2 = [hi1i2 ] and V2 = [vj1j2],
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two 4 × 4 matrices with entries either 0 or 1 , according to following rules:

(1.3.2)

{
hi1i2 = 1 if xi1i2 ∈ B,

= 0 if xi1i2 ∈ Σ2×2 − B,

and

(1.3.3)

{
vj1j2 = 1 if yj1j2 ∈ B,

= 0 if yj1j2 ∈ Σ2×2 − B.

Obviously, hi1i2 = vj1j2, where (i1, i2) and (j1, j2) are related according to
(1.2.16)∼(1.2.19). Now, the transition matrix T2 for B can be defined by

(1.3.4)

T2 ≡ T2(B)

=




v11 v12 v21 v22

v13 v14 v23 v24

v31 v32 v41 v42

v33 v34 v43 v44


 .

Define

(1.3.5) vj1j2···jn
= vj1j2 · vj2j3 · · · vjn−1jn

,

and
Tn = [vj1j2···jn

],

then the transition matrix Tn for B defined on Z2×n is a 2n ×2n matrix with
entries vj1···jn

, which are either 1 or 0, by substituting yj1···jn
by vj1···jn

in Xn,
see (1.2.27)∼(1.2.29).

In the following, we give some interpretations for Tn, one from an al-
gebraic perspective and the other from Lindenmayer system (for details see
Remark 1.5 ). For clarity, T3 can be written in a complete form as

(1.3.6)




v11v11 v11v12 v12v21 v12v22 v21v11 v21v12 v22v21 v22v22

v11v13 v11v14 v12v23 v12v24 v21v13 v21v14 v22v23 v22v24

v13v31 v13v32 v14v41 v14v42 v23v31 v23v32 v24v41 v24v42

v13v33 v13v34 v14v43 v14v44 v23v33 v23v34 v24v43 v24v44

v31v11 v31v12 v32v21 v32v22 v41v11 v41v12 v42v21 v42v22

v31v13 v31v14 v32v23 v32v24 v41v13 v41v14 v42v23 v42v24

v33v31 v33v32 v34v41 v34v42 v43v31 v43v32 v44v41 v44v42

v33v33 v33v34 v34v43 v34v44 v43v33 v43v34 v44v43 v44v44



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From an algebraic perspective, T3 can be defined through the classical
Kronecker product (or tensor product) ⊗ and Hadamard product ⊙. Indeed,
for any two matrices A = (aij) and B = (bkl), the Kronecker product of
A ⊗ B is defined by

(1.3.7) A ⊗ B = (aijB).

On the other hand, for any two n × n matrices

C = (cij) and D = (dij),

where cij and dij are numbers or matrices. Then, Hadamard product of
C ⊙ D is defined by

(1.3.8) C ⊙ D = (cij · dij),

where the product cij · dij of cij and dij may be multiplication of numbers,
numbers and matrices or matrices whenever it is well-defined. For instance,
cij is number and dij is matrix.
Denoted by

(1.3.9) T2 =

[
T1 T2

T3 T4

]
,

where Tk is a 2 × 2 matrix with

(1.3.10) Tk =

[
vk1 vk2

vk3 vk4

]
.

Then, using Hadamard product, (1.3.6) can be written as

(1.3.11) T3 =




v11 v12 v21 v22

v13 v14 v23 v24

v31 v32 v41 v42

v33 v34 v43 v44


 ⊙




T1 T2 T1 T2

T3 T4 T3 T4

T1 T2 T1 T2

T3 T4 T3 T4


 ,

and can also be written by Kronecker product with Hadamard product as

(1.3.12) T3 =
(

T2

)
4×4

⊙
[ [

1 1
1 1

]
⊗
[

T1 T2

T3 T4

] ]
,

where (T2)4×4 is interpreted as a 4×4 matrix given as in (1.3.4). Hereinafter,
(M)k×k is used as the k × k matrix; its entries may also be matrices.
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Furthermore, by (1.3.9) and (1.3.12), T3 can also be written as

(1.3.13) T3 =

[
T1 ⊙T2 T2 ⊙ T2

T3 ⊙T2 T4 ⊙ T2

]
.

Now, from the perspective of Lindenmayer system, (1.3.13) can be interpreted
as a rewriting rule as follows:

To construct T3 from T2, simply replace Tk in (1.3.9) by Tk ⊙T2, i.e,

(1.3.14) Tk 7−→ Tk ⊙ T2 =

[
vk1T1 vk2T2

vk3T3 vk4T4

]
.

Now, T3 can be written as

(1.3.15) T3 =




v11T1 v12T2 v21T1 v22T2

v13T3 v14T4 v23T3 v24T4

v31T1 v32T2 v41T1 v42T2

v33T3 v34T4 v43T3 v44T4


 .

Since vkj is either 0 or 1. The entries of T3 in (1.3.15) are Tk, i.e, Tk can be
taken as the ”basic element” in constructing Tn , n ≥ 3. As demonstrated
later that(1.3.14) is an efficient means of constructing Tn+1 from Tn for any
n ≥ 2.

Now, by induction on n, the following properties of transition matrix Tn

on Z2×n can be easily proven.

Theorem 1.4. Let T2 be a transition matrix given by (1.3.4). Then, for
higher order transition matrices Tn, n ≥ 3, we have the following three
equivalent expressions
(I) Tn can be decomposed into n successive 2 × 2matrices (or n-successive
Z-maps) as follows:

Tn =

[
Tn;1 Tn;2

Tn;3 Tn;4

]
,

Tn;j1···jk
=

[
Tn;j1···jk1 Tn;j1···jk2

Tn;j1···jk3 Tn;j1···jk4

]
,

for 1 ≤ k ≤ n − 2 and

Tn;j1···jn−1 =

[
vj1···jn−11 vj1···jn−12

vj1···jn−13 vj1···jn−14

]
.

Furthermore,

(1.3.16) Tn;k =

[
vk1Tn−1;1 vk2Tn−1;2

vk3Tn−1;3 vk4Tn−1;4

]
.
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(II) Starting from

T2 =

(
T1 T2

T3 T4

)
,

with

Tk =

(
vk1 vk2

vk3 vk4

)
,

Tn can be obtained from Tn−1 by replacing Tk by Tk ⊙ T2 according to
(1.3.14).

(III)

Tn = (Tn−1)2n−1×2n−1 ⊙
(

E2n−2 ⊗
(

T1 T2

T3 T4

) )
,

where E2k is the 2k × 2k matrix with 1 as its entries.

Proof.
(I)The proof is simply replaced Yn;j1···jk

and yj1···jn
by Tn;j1···jk

and vj1···jn

in Theorem 2.1, respectively.
(II) follow from (I) directly.
(III) follow from (I), we have

Tn =

[
Tn;1 Tn;2

Tn;3 Tn;4

]
.

And by (1.3.16), we get following formula.

Tn =




v11Tn;1 v12Tn;2 v21Tn;1 v22Tn;2

v13Tn;3 v14Tn;4 v23Tn;3 v24Tn;4

v31Tn;1 v32Tn;2 v41Tn;1 v42Tn;2

v33Tn;3 v34Tn;4 v43Tn;3 v44Tn;4




= (Tn−1)2n−1×2n−1 ⊙
(

E2n−2 ⊗
(

T1 T2

T3 T4

) )
.

The proof is complete.

Remark 1.5. While studying the growth processes of plants, Lindenmayer,
e.g.[39], derived a developmental algorithm, i.e., a set of rules which describes
plant development in time. Thereafter, a system with a set of rewriting rules
was called Lindenmayer system or L-system. From Theorem 1.4(III), the
family of transition matrices {Tn}n≥2 is a two-dimensional L-system with a
rewriting rule(1.3.16). Similar to many L-systems, our system Tn also enjoys
the simplicity of recursion formulas and self-similarity.
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As for spatial entropy h(B), we have the following theorem.

Theorem 1.6. Given a basic set B ⊂ Σ2×2, let λn be the largest eigenvalue of
the associated transition matrix Tn which is defined in Theorem 1.4. Then,

(1.3.17) h(B) = lim
n→∞

log λn

n
.

Proof. By the same arguments as in [13], the limit (1.1.2) is well-defined
and exists. From the construction of Tn, we observe that for m ≥ 2,

(1.3.18)

Γm×n(B) =
∑

1≤i,j≤2n

(Tm−1
n )i,j

≡ #(Tm−1
n ).

As in a one dimensional case, we have

lim
m→∞

log #(Tm−1
n )

m
= log λn,

e.g. [42]. Therefore,

h(B) = lim
m,n→∞

log Γm×n(B)

mn

= lim
n→∞

1

n
( lim
m→∞

log Γm×n(B)

m
)

= lim
n→∞

log λn

n
.

The proof is complete.

1.3.2 Computation of Maximum Eigenvalues and Spa-
tial Entropy

Given a transition matrix T2, for any n ≥ 2, the characteristic polyno-
mials |Tn − λ| are of degree 2n. In general, computing or estimating the
largest eigenvalue λn = λn(T2) of |Tn −λ| for a large n is relatively difficult.
However, in this section, we present a class of T2 in which λn(T2) can be

computed explicitly. Indeed, assume that T2 has the form of

[
A B

B A

]
in

(1.3.9), i.e.,

(1.3.19) T1 = T4 = A =

[
a a2

a3 a

]
,
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and

(1.3.20) T2 = T3 = B =

[
b b2

b3 b

]
,

where a, a2, a3, b, b2 and b3 are either 0 or 1.
We need the following lemma.

Lemma 1.7. Let A and B be non-negative and non-zero m × m matrices,
respectively, and α and β are positive numbers. The maximum eigenvalue of[

A αB

βB A

]
is then the maximum eigenvalue of

A +
√

αβB.

Proof. Consider ∣∣∣∣
A − λ αB

βB A − λ

∣∣∣∣ = 0.

For |A − λ| 6= 0, the last equation is equivalent to

∣∣∣∣
A − λ B

0 (A − λ) − αβB(A − λ)−1B

∣∣∣∣ = 0,

or
|I − αβ((A − λ)−1B)2| = 0.

Then, we have

|A +
√

αβB − λ| = 0 or |A −
√

αβB − λ| = 0.

Since A and B are non-negative and α and β are positive, verifying that the

maximum eigenvalue λ of

[
A αB

βB A

]
and A+

√
αβB are equal is relatively

easy. The proof is complete.

Now, we can state our computation results for λn(T2) when T2 satisfies
(1.3.19) and (1.3.20).

Theorem 1.8. Assume that T2 =

[
A B

B A

]
and A =

[
a a2

a3 a

]
and B =

[
b b2

b3 b

]
where a, b, a2, a3, b2, b3 ∈ {0, 1}. For n ≥ 2, let λn be the largest

eigenvalue of
|Tn − λ| = 0.
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Then

(1.3.21) λn = αn−1 + βn−1,

where αk and βk satisfy the following recursion relations:

αk+1 = aαk + bβk,(1.3.22)

βk+1 =
√

(a2αk + b2βk)(a3αk + b3βk),(1.3.23)

for k ≥ 0, and

(1.3.24) α0 = β0 = 1.

Furthermore, the spatial entropy h(T2) is equal to log ξ∗, where ξ∗ is the
maximum root of the following polynomials Q(ξ):
(I) if a2 = a3 = 1,

(1.3.25)
Q(ξ) ≡ 4ξ2(ξ − a)2 + (γ2 − 4δ)(ξ − a)2

−γ2ξ2 − 2γ(2b − aγ)ξ − (2b − aγ)2,

where

(1.3.26) γ = b2 + b3 and δ = b2b3.

(II) if a2a3 = 0 and a2b3 + a3b2 = 1,

(1.3.27) Q(ξ) ≡ ξ3 − aξ2 − δξ + aδ − b.

Moreover, if a2a3 = 0 and a2b3 + a3b2 = 0, then h(T2) = 0.

Proof. Owing to the special structure of T2, it is easy to verify that for any
k ≥ 2, we have

Tk =

[
Ak Bk

Bk Ak

]
,

and

Tk+1 =

[
Ak+1 Bk+1

Bk+1 Ak+1

]
,

here

(1.3.28) Ak+1 = Tk ⊙ A =

[
aAk a2Bk

a3Bk aAk

]
,
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and

(1.3.29) Bk+1 = Tk ⊙ B =

[
bAk b2Bk

b3Bk bAk

]
,

A2 = A and B2 = B. Now by Lemma 1.7,

|Tn+1 − λn+1| = 0,

implies

(1.3.30) |An+1 + Bn+1 − λn+1| = 0.

Let
α0 = 1 and β0 = 1.

By induction on k, 1 ≤ k ≤ n, and using (1.3.28),(1.3.29),(1.3.30) and
Lemma 1.7, it is straight forward to derive

(1.3.31) |αkAn−k+1 + βkBn−k+1 − λn+1| = 0,

with αk and βk satisfy (1.3.22) and (1.3.23). In particular,

αn = aαn−1 + bβn−1,(1.3.32)

βn = {(a2αn−1 + b2βn−1)(a3αn−1 + b3βn−1)}
1
2 ,(1.3.33)

and
λn+1 = αn + βn.

This proves the first part of the theorem.
The remainder of the proof, demonstrates that h(T2) = log λ∗ where λ∗ is
the maximum root of Q(λ). From (1.3.33), we have

(1.3.34)
β2

n = a2a3α
2
n−1 + (a2b3 + a3b2)αn−1βn−1

+ b2b3β
2
n−1.

Now, in (1.3.34), we first solve αn−1 in terms of βn−1 and βn, then substitute
αn−1 and αn into (1.3.32) to obtain difference equations involving βn+1, βn

and βn−1. There are two cases:

Case I. If a2 = a3 = 1, then we have

(1.3.35) αn−1 =
1

2
{−γβn−1 + (4β2

n + (γ2 − 4δ)β2
n−1)

1
2}.
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Substituting (1.3.35) into (1.3.32), yields

(4β2
n+1 + (γ2 − 4δ)β2

n)
1
2 = γβn + (2b − aγ)βn−1

+ a(4β2
n + (γ2 − 4δ)β2

n−1)
1
2 .

(1.3.36)

Now, let

(1.3.37) ξn =
βn

βn−1
,

and after dividing (1.3.36) by βn−1, we have

(1.3.38) ξn{4ξ2
n+1 + (γ2 − 4δ)} 1

2 = γξn + (2b − aγ) + a{4ξ2
n + (γ2 − 4δ)} 1

2 .

(1.3.38) can be written as the following iteration map:

(1.3.39) ξn+1 = G1(ξn),

where

(1.3.40) G1(ξ) =
1

2
{4δ + 2γg(ξ) + g2(ξ)} 1

2 ,

and

(1.3.41) g(ξ) = (2b − aγ)ξ−1 + a{4 + (γ2 − 4δ)ξ−2} 1
2 .

We first observe the fixed point ξ∗ of G1(ξ), i.e., ξ∗ = G(ξ∗), is a root of Q(ξ).
Indeed, by letting ξn = ξn+1 = ξ∗ in (1.3.38), we have

(ξ∗ − a)(4ξ2
∗ + (γ2 − 4δ))

1
2 = γξ∗ + (2b − aγ),

which gives us Q(ξ∗) = 0.
It can be proven that the maximum fixed point of G1(ξ) or the maximum

root ξ∗ of Q(ξ) = 0 satisfies 1 ≤ ξ∗ ≤ 2 and

(1.3.42) ξn → ξ∗ as n → ∞.

Details are omitted here for brevity. By (1.3.21), (1.3.35) and (1.3.37), we
can also prove that

(1.3.43)
λn+1

λn

→ ξ∗ as n → ∞.

Hence, h(T2) = log ξ∗.
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Case II. If a2a3 = 0 and a2b3 + a3b2 = 1,
then, from (1.3.33), we have

(1.3.44) αn−1 = β2
nβ−1

n−1 − δβn−1.

Again, substituting (1.3.44) into (1.3.32) and letting (1.3.37) lead to

(1.3.45) ξ2
n+1ξn − aξ2

n − δξn + aδ − b = 0,

i.e.,
ξn+1 = G2(ξn),

where

(1.3.46) G2(ξ) = {aξ + δ + (b − aδ)ξ−1} 1
2 .

The maximum fixed point ξ∗ of (1.3.46) is the maximum root of Q(ξ) = 0 in
(1.3.27). It can also be proven that (1.3.42) and (1.3.43) holds in this case.

Finally, if a2a3 = 0 and a2b3 + a3b2 = 0, then βn are all equal for n ≥ 1.
Hence, αn is at most linear growth in n, implying that h(T2) = 0. The proof
is thus complete.

For completeness, we list all T2 which satisfy (1.3.19) and (1.3.20) and
have positive entropy h(T2). The table is arranged based on the magnitude of
h(T2). The polynomial Q(.) in either (1.3.25) or (1.3.27) has been simplified
whenever possible.
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A B Q(λ) λ∗

(1)

[
1 1
1 1

] [
1 1
1 1

]
λ − 2 2

(2)

[
1 1
1 1

] [
1 1
0 1

]
or

[
1 0
1 1

]
λ3 − 2λ2 + λ − 1 (i)

(3)(α)

[
1 1
0 1

]
or

[
1 0
1 1

] [
1 1
1 1

]
λ2 − λ − 1 g

(3)(β)

[
1 1
1 1

] [
1 0
0 1

]
λ2 − λ − 1 g

(3)(γ)

[
0 1
1 0

] [
1 1
1 1

]
λ2 − λ − 1 g

(4)

[
1 1
0 1

] [
1 0
1 1

]
λ3 − λ2 − 1 (ii)

[
1 0
1 1

] [
1 1
0 1

]

(5)

[
0 1
0 0

]
or

[
0 0
1 0

] [
1 1
1 1

]
λ3 − λ − 1 (iii)

(6)

[
0 1
1 0

] [
1 1
0 1

]
or

[
1 0
1 1

]
λ4 − λ − 1 (iv)

(i) λ∗
.
= 1.75488, (ii) λ∗

.
= 1.46557, (iii) λ∗

.
= 1.32472, (iv) λ∗

.
= 1.22074

where, g
.
= 1.61803, is the golden mean, a root of λ2 − λ − 1 = 0.

Table 1.1

The recursion formulas for λn are
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(1) λn = 2n,

(2) λn+1 = λn + (λnλn−1)
1
2 ,

(3) (α) λn+1 = λn + (λn(λn − λn−1))
1
2 ,

(β) λn+1 = λn + λn−1,

(γ) λn+1 = λn + λn−1,

(4) λn+1 = λn + (λn−1(λn − λn−1))
1
2 ,

(5) λn+1 = (λnβn−1)
1
2 + βn−1,

where βn−1 = λn − λn−1 + · · ·+ (−1)n,

(6) λn+1 = λn + (λnβn−2)
1
2 − βn−2.

Table 1.2

Remark 1.9.
(i) According to Table 1.2, for cases (1)∼(4), λn+1 depends only on two
preceding terms, λn and λn−1. However, in (5) and (6), λn+1 depends on all
of its preceding terms λ1, · · · , λn.
(ii) From Lemma 1.7 and Theorem 1.8, in addition to the maximum eigen-
value we can obtain a complete set of eigenvalues of Tn explicitly.
(iii) In Theorem 1.8, polynomial Q(ξ) given in (1.3.25) or (1.3.27) is the lim-

iting equation for λ
1
n
n . It is interesting to know is there any limiting equation

for general Tn.

Remark 1.10. Similar to the concept in Theorem 1.8, if T2 does not satisfy
(1.3.19) and (1.3.20), another special structure can allow us to obtain explicit
recursion formulas of λn and compute its spatial entropy h(T2) explicitly.

1.3.3 2ℓ × 2ℓ Systems

The results in last two subsections can be generalized to p-symbols on Z2ℓ×2ℓ.
Given a basic set B ⊂ Σ2ℓ×2ℓ, horizontal and vertical transition matrices
H2 = [hi1i2 ]q2×q2 and V2 = [vj1j2 ]q2×q2 , where q = pℓ2, can be defined according
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the rules (1.3.2) and (1.3.3) by replacing Σ2×2 with Σ2ℓ×2ℓ, respectively. Then
the transition matrix T2(B) for B can be defined by

(1.3.47) T2 = T2(B) =




V1 V2 · · · Vq

Vq+1 Vq+2 · · · V2q

...
...

. . .
...

V(q−1)q+1 V(q−1)q+2 · · · Vq2




where

(1.3.48) Vm =




vm,1 vm,2 · · · vm,q

vm,(q+1) vm,q+2 · · · vm,2q

...
...

. . .
...

vm,(q−1)q+1 vm,(q−1)q+2 · · · vm,q2


 ,

1 ≤ m ≤ q2. The higher order transition matrix Tn = [vj1j2···jn
] for B defined

on Z2ℓ×nℓ is a qn × qn matrix, where vj1j2···jn
is given by (1.3.5) which are

either 1 or 0, by substituting yj1···jn
by vj1···jn

in Xn, see (1.2.36)∼(1.2.38).
For completeness, we state the following theorem for Tn and omit the proof
for brevity.

Theorem 1.11. Let T2 be a transition matrix given by (1.3.47) and (1.3.48).
Then for higher order transition matrices Tn, n ≥ 3, we have the following
three equivalent expressions

(I) Tn can be decomposed into n successive q × q matrices as follows:

Tn =




Tn;1 · · · Tn;q

Tn;q+1 · · · Tn;2q

...
. . .

...
Tn;(q−1)q+1 · · · Tn;q2




Tn;j1···jk
=




Tn;j1,··· ,jk,1 · · · Tn;j1,··· ,jk,q

Tn;j1,··· ,jk,q+1 · · · Tn;j1,··· ,jk,2q

...
. . .

...
Tn;j1,··· ,jk,(q−1)q+1 · · · Tn;j1,··· ,jk,q2




for 1 ≤ k ≤ n − 2 and

Tn;j1···jn−1 =




vj1,··· ,jn−1,1 · · · vj1,··· ,jn−1,q

vj1,··· ,jn−1,q+1 · · · vj1,··· ,jn−1,2q

...
. . .

...
vj1,··· ,jn−1,(q−1)q+1 · · · vj1,··· ,jn−1,q2


 .
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Furthermore,

Tn;k =




vk,1Tn−1;1 · · · vk,qTn−1;q

vk,q+1Tn−1;q+1 · · · vk,2qTn−1;2q

...
. . .

...
vk,(q−1)q+1Tn−1;(q−1)q+1 · · · vk,q2Tn−1;q2




(II) Starting from

T2 =




T1 · · · Tq

Tq+1 · · · T2q

...
. . .

...
T(q−1)q+1 · · · Tq2


 ,

with

Tk =




vk,1 · · · vk,q

vk,q+1 · · · vk,2q

...
. . .

...
vk,(q−1)q+1 · · · vk,q2


 ,

Tn can be obtained from Tn−1 by replacing Tk by Tk ⊙ T2 according
to

Tk 7→ Tk ⊙T2 =




vk,1T1 · · · vk,qTq

vk,q+1Tq+1 · · · vk,2qT2q

...
. . .

...
vk,(q−1)q+1T(q−1)q+1 · · · vk,q2Tq2




(III)

Tn = (Tn−1)qn−1×qn−1 ⊙ (Eqn−2 ⊗ T2).

For the spatial entropy h(B), we have a similar result as in Theorem 1.6.

Theorem 1.12. Given a basic set B ⊂ Σm1×m2 , let ℓ be the smallest integer

such that 2ℓ ≥ m1 and 2ℓ ≥ m2, and let B̃ = Σ2ℓ×2ℓ(B). Suppose λn;ℓ be the
largest eigenvalue of the associated transition matrix Tn, which is defined in
Theorem 1.11. Then

h(B) =
1

ℓ2
lim

n→∞

logλn;ℓ

n
.
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Proof. As in Theorem 1.6,

h(B) = lim
m,n→∞

logΓmℓ×nℓ(B̃)

mℓ × nℓ

=
1

ℓ2
lim

n→∞

1

n
( lim
m→∞

log#(Tm−1
n (B̃))

m
)

=
1

ℓ2
lim

n→∞

1

n
( lim
m→∞

logλm−1
n;ℓ

m
)

=
1

ℓ2
lim

n→∞

logλn;ℓ

n
.

The proof is complete.

1.3.4 Relation with Matrix Shifts

Under many circumstances, we are given a pair of horizontal transition matrix
H = (hij)p×p and vertical transition matrix V = (vij)p×p, where hij and
vij ∈ {0, 1}, e.g. [13, 29, 30, 32]. Now, the set of all admissible patterns
which can be generated by H and V on Zm1×m2 and Z2 are denoted by
Σm1×m2(H ; V ) and Σ(H ; V ), respectively. Furthermore, Σm1×m2(H ; V ) and
Σ(H ; V ) can be characterized by
(1.3.49)

Σm1×m2(H ; V ) = {U ∈ Σm1×m2,p : huαuα+e1
= 1 and vuβuβ+e2

= 1,

where e1 = (1, 0), e2 = (0, 1), α = (α1, α2), β = (β1, β2)
with 1 ≤ α1 ≤ m1 − 1 , 1 ≤ α2 ≤ m2 and 1 ≤ β1 ≤ m1 1 ≤ β2 ≤ m2 − 1}

and

(1.3.50)
Σ(H ; V ) = {U ∈ Σ2

p : huαuα+e1
= 1 and vuβuβ+e2

= 1

for all α, β ∈ Z2}.

In literature, Σ(H ; V ) is often called Matrix shift, Markov shift or subshift
of finite types, e.g. [13, 30, 32, 38]

As before, we are concerned about constructing Σm1×m2(H ; V ). We first
show that the established theories can be applied to answer this question.
Indeed, we introduce S = {0, 1, 2, · · · , p−1}. On Z2×2, consider local pattern
U = (uα1α2) with uα1α2 ∈ S. Define the ordering matrices X2 = [xi1i2 ]p2×p2

and Y2 = [yj1j2]p2×p2 for Σ2×2. Now, the basic set B(H ; V ) determined by H

and V can be expressed as
(1.3.51)

B(H ; V ) = {U = (uα1α2) ∈ Σ2×2 : hu11u21hu12u22vu11u12vu21u22 = 1}.
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Therefore, the transition matrix T2 = T2(H ; V ) can be expressed as T2 =[tj1j2]p2×p2

with tj1j2 = 1 if and only if yj1j2 ∈ B(H ; V ), i.e., tj1j2 = 1 if and only if

(1.3.52) hu11u21hu12u22vu11u12vu21u22 = 1,

where jl is related to uα1α2 according to (1.2.12) similarly.
Now, Tn = Tn(H ; V ) can be constructed recursively from T2(H ; V ) by

Theorem 1.11. Then λn and spatial entropy h(H ; V ) can be studied by

Theorem 1.12. It is easy to verify Tn(H ; V ) = T
(n)

H,V , the transition matrix

obtained by Juang et al in [30]. Furthermore, T
(n)
H,V in [30] can also be obtained

by deleting the rows and columns formed by zeros in Tn(H ; V ).
On the other hand, given a basic set B ⊂ Σ2×2,p (or Σ2l×2l,p), in general

there is no horizontal transition matrix H = (hij)p×p and vertical transition
matrix V = (vij)p×p such that B = B(H ; V ) given by (1.3.51). Indeed, the
number of subsets of Σ2×2,p is 2p4

and the number of B(H ; V ) is at most 22p2

and 22p2
< 2p4

for any p ≥ 2. However, as mentioned in p.468[38], one can
recode any shift of finite type to a matrix subshift.

Notably, the n-th order transition matrix Tn(B) is a qn × qn matrix with
q = pℓ2 and the n-th order transition matrix Tn(H(B); V (B))) generated by
T2(H(B); V (B))) is a mn×mn matrix. Consequently, if m = #B is relatively
small compared with q = pl2, we may study the eigenvalue problems of
Tn(H(B); V (B)). It is clear, small m generates less admissible patterns and
then smaller entropy. For B with positive entropy h(B) as in Table 3.1, #B
is much larger than q = 2. Therefore, in general working on Tn(B) is better
than on Tn(H(B); V (B))).
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Chapter 2

Patterns Generation and Spatial Entropy in

Two-dimensional Lattice Models

§ 2.1 Introduction

Lattices are important in scientifically modelling underlying spatial struc-
tures. Investigations in this field have covered phase transition [11], [12], [34],
[35], [36], [37], [38], [45], [46], [47], [48], chemical reaction [7], [8], [24], biol-
ogy [9], [10], [21], [22], [23], [31], [32], [33] and image processing and pattern
recognition [16], [17], [18], [19], [20], [25]. In the field of lattice dynamical
systems (LDS) and cellular neural networks (CNN), the complexity of the set
of all global patterns recently attracted substantial interest. In particular,
its spatial entropy has received considerable attention [1],[2], [3], [4], [5], [13],
[14], [15], [28], [29],[30], [39], [40], [41], [42], [43], [44].

The one dimensional spatial entropy h can be found from an associated
transition matrix T. The spatial entropy h equals log ρ(T), where ρ(T) is the
maximum eigenvalue of T.

In two-dimensional situations, higher transition matrices have been dis-
covered in [30] and developed systematically [4] by studying the patterns
generation problem.

This study extends our previous work [4]. For simplicity, two symbols on
2 × 2 lattice Z2×2 are considered. A transition matrix in the horizontal (or
vertical) direction

(2.1.1) A2 =




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


 ,

which is linked to a set of admissible local patterns on Z2×2 is considered,
where aij ∈ {0, 1} for 1 ≤ i, j ≤ 4. The associated vertical (or horizontal)

33
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transition matrix B2 is given by

(2.1.2) B2 =




b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44




A2 and B2 are connected to each other as follows.

(2.1.3) A2 =




b11 b12 b21 b22

b13 b14 b23 b24

b31 b32 b41 b42

b33 b34 b43 b44


 =

[
A2;1 A2;2

A2;3 A2;4

]
,

and

(2.1.4) B2 =




a11 a12 a21 a22

a13 a14 a23 a24

a31 a32 a41 a42

a33 a34 a43 a44


 =

[
B2;1 B2;2

B2;3 B2;4

]
.

Notably if A2 represents the horizontal (or vertical) transition matrix then
B2 represents the vertical (or horizontal) transition matrix. Results that hold
for A2 are also valid for B2. Therefore, for simplicity, only A2 is presented
herein.

The recursive formulae for n-th order transition matrices An defined on
Z2×n were obtained [4] as follows

(2.1.5) An+1 =




b11An;1 b12An;2 b21An;1 b22An;2

b13An;3 b14An;4 b23An;3 b24An;4

b31An;1 b32An;2 b41An;1 b42An;2

b33An;3 b34An;4 b43An;3 b44An;4




whenever

(2.1.6) An =

[
An;1 An;2

An;3 An;4

]
,

for n ≥ 2, or equivalently,

(2.1.7) An+1;α =

[
bα1An;1 bα2An;2

bα3An;3 bα4An;4

]
,
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for α ∈ {1, 2, 3, 4}. The number of all admissible patterns defined on Zm×n

which can be generated from A2 is now defined by
(2.1.8)

Γm,n(A2) = |Am−1
n |

= the summation of all entries in 2n × 2n matrix Am−1
n .

The spatial entropy h(A2) is defined as

(2.1.9) h(A2) = lim
m,n→∞

1

mn
log Γm,n(A2) = lim

m,n→∞

1

mn
log |Am−1

n |.

The existence of the limit (2.1.9) has been shown in [4], [15], [30]. When
h(A2) > 0, the number of admissible patterns grows exponentially with the
lattice size m × n. In this situation, spatial chaos arises. When h(A2) = 0,
pattern formation occurs.

To compute the double limit in (2.1.9), n ≥ 2 can be fixed initially and
m allowed to tend to infinite [30] and [4]; then the Perron-Frobenius theorem
is applied;

(2.1.10) lim
m→∞

1

m
log |Am−1

n | = log ρ(An),

which implies

(2.1.11) h(A2) = lim
n→∞

1

n
log ρ(An),

where ρ(M) is the maximum eigenvalue of matrix M . An is a 2n×2n matrix,
so computing ρ(An) is usually quite difficult when n is larger. Moreover,
(2.1.11) does not produce any error estimation in the estimated sequence
1

n
log ρ(An) and its limit h(A2). This causes a serious problem in computing

the entropy. However, for a class of A2, the recursive formulae for ρ(An) can
be discovered, along with a limiting equation to ρ∗ = exp(h(A2)), as in [4].

This study takes a different approach to resolve these difficulties. Previ-
ously, the double limit (2.1.9) was initially examined by taking the m-limit
firstly as in (2.1.10). Now, for each fixed m ≥ 2, the n-limit in (2.1.9) is
studied. Therefore, the limit

(2.1.12) lim
n→∞

1

n
log |Am−1

n |

is considered. Write

(2.1.13) Am
n =

[
Am,n;1 Am,n;2

Am,n;3 Am,n;4

]
.



36 Pattern Generation Problems

The investigation of (2.1.12) would be simpler if a recursive formula such as
(2.1.7) could be found for Am,n;α. The first task in this study is to solve this
problem. For matrix multiplication, the indices of An;α, α ∈ {1, 2, 3, 4} are
conveniently expressed as

(2.1.14) An =

[
An;11 An;12

An;21 An;22

]
.

Then

(2.1.15) Am,n;α =

2m−1∑

k=1

A(k)
m,n;α,

where

(2.1.16) A(k)
m,n;α = An;j1j2An;j2j3 · · ·An;jmjm+1,

(2.1.17) k = 1 +
m∑

i=2

2m−i(ji − 1),

and

(2.1.18) α = 2(j1 − 1) + jm+1.

A
(k)
m,n;α in (2.1.16) is called an elementary pattern of order (m, n), and is a

fundamental element in constructing Am,n;α in (2.1.15). Notably the elemen-
tary patterns are in lexicographic order, according to (2.1.17). As in [4], the
following m-th order ordering matrix.

(2.1.19) Xm,n =

[
Xm,n;1 Xm,n;2

Xm,n;3 Xm,n;4

]
,

is represented to record systematically these elementary patterns, where

(2.1.20) Xm,n;α = (A(k)
m,n;α)t

1≤k≤2m−1

is a 2m−1 column vector.
The first main result of this study is to introduce the connecting operator

Cm, and to use it to derive a recursive formula like (2.1.7) for A
(k)
m,n;α. Indeed,

(2.1.21) Cm =




Cm;11 Cm;12 Cm;13 Cm;14

Cm;21 Cm;22 Cm;23 Cm;24

Cm;31 Cm;32 Cm;33 Cm;34

Cm;41 Cm;42 Cm;43 Cm;44



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(2.1.22) =




Sm;11 Sm;12 Sm;21 Sm;22

Sm;13 Sm;14 Sm;23 Sm;24

Sm;31 Sm;32 Sm;41 Sm;42

Sm;33 Sm;34 Sm;43 Sm;44


 ,

where
(2.1.23)

Cm;ij =

([
ai1 ai2

ai3 ai4

]
◦
(
⊗̂
[

B2;1 B2;2

B2;3 B2;4

]m−2
)

2×2

)

2m−1×2m−1

◦
(

E2m−2×2m−2 ⊗
[

a1j a2j

a3j a4j

])

2m−1×2m−1

is a 2m−1 × 2m−1 matrix where Ek×k is the k × k full matrix; ⊗ denotes
the Kronecker product, ◦ denotes the Hadamard product and the product ⊗̂
which involves both the Kronecker product and the Hadamard product, as
stipulated by Definition 2.2.

In Theorem 2.4, Cm;ij is shown to be ai1i2ai2i3 · · ·aimim+1 , with i1 = i and
im+1 = j. Therefore, all admissible paths of A2 from i to j with length m

are arranged systematically in matrix Cm;ij. Now, the recursive formula is

(2.1.24) A
(k)
m,n+1;α =




2m−1∑

l=1

(Sm;α1)klA
(l)
m,n;1

2m−1∑

l=1

(Sm;α2)klA
(l)
m,n;2

2m−1∑

l=1

(Sm;α3)klA
(l)
m,n;3

2m−1∑

l=1

(Sm;α4)klA
(l)
m,n;4




,

for m ≥ 2, n ≥ 2, 1 ≤ k ≤ 2m−1 and 1 ≤ α ≤ 4. (2.1.24) is the generalization
of (2.1.7).

The recursive formula (2.1.24) immediately yields a lower bound on en-
tropy. Indeed, for any positive integer K and diagonal periodic cycle β1β2 · · ·βKβK+1,
where βj ∈ {1, 4} and βK+1 = β1,

(2.1.25) h(A2) ≥
1

mK
log ρ(Sm;β1β2Sm;β2β3 · · ·Sm;βKβK+1

).

Equation (2.1.25) implies h(A2) > 0, if a diagonal periodic cycle of β1β2 · · ·βKβ1

applies, with a maximum eigenvalue of Sm;β1β2 · · ·Sm;βKβ1 that greater than
one. This method powerfully yields the positivity of spatial entropy, which
is hard in examining the complexity of patterns generation problems.

However, the subadditivity of Γm,n(A2) is known to imply

(2.1.26) h(A2) ≤
1

mn
log Γm,n(A2)
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as in [15]. Consequently, (2.1.8), (2.1.10) and (2.1.26) indicate an upper
bound of entropy as

(2.1.27) h(A2) ≤
1

n
log ρ(An),

for any n ≥ 2.
However, the Perron-Frobenius theorem also implies

(2.1.28) lim sup
m→∞

1

m
log tr(Am−1

n ) = log ρ(An),

where tr(M) denotes the trace of matrix M [26], [27]. Therefore, (2.1.28)
implies

(2.1.29) h(A2) = lim sup
m,n→∞

1

mn
log tr(Am−1

n ).

In studying the double-limit of (2.1.29), for each fixed m ≥ 2, the n-limit in
(2.1.29)

(2.1.30) lim sup
n→∞

1

n
log tr(Am−1

n )

is first considered. (2.1.30) can be studied by introducing the following trace
operator

(2.1.31) Tm =

[
Cm;11 Cm;22

Cm;33 Cm;44

]
.

Then, a recursive formula for tr(Am
n ) can be verified

(2.1.32) tr(Am
n ) =

∣∣∣∣∣∣
Tn−2

m




trXm,2;1

trXm,2;4



∣∣∣∣∣∣
,

for n ≥ 2, where tr(Xm,n;α) = (trA
(k)
m,n;α)t

1≤k≤2m−1 and |v| =
l∑

j=1

vj for vector

v = (v1, · · · , vl)
t. Consequently, (2.1.29) and (2.1.32) yield

(2.1.33) h(A2) = lim sup
m→∞

1

m
log ρ(Tm).
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Notably, for a large class of A2, the limit sup in (2.1.28), (2.1.29), (2.1.30)
and (2.1.33) can be replaced by limit. See section 3.3 for details.

Now, (2.1.33) can be applied to find the upper bounds of entropy. For
example, when A2 is symmetric,

(2.1.34) h(A2) ≤
1

2m
log ρ(T2m),

for any m ≥ 1. Since

(2.1.35) Tn ≤ Bn

can be shown for any n ≥ 2. Generally, (2.1.33) and (2.1.34) yield better
approximation than (2.1.11) and (2.1.27).

In summary, this study yields lower-bound estimates of entropy like (2.1.25)
by introducing connecting operators Cm, and upper-bound estimates of en-
tropy like (2.1.34) by introducing trace operators Tm. This approach accu-
rately and effectively yields the spatial entropy.

The rest of this paper is organized as follows. Section 3.2 derives the
connecting operator Cm which can recursively reduce higher order elementary
patterns to patterns of lower order. Then, the lower-bound of spatial entropy
can be found by computing the maximum eigenvalues of the diagonal periodic
cycles of sequence Sm;αβ . Section 3.3 addresses the trace operator Tm of Cm.
The entropy can be calculated by computing the maximum eigenvalues of
Tm. When A2 is symmetric, the upper-bounds of entropy are also found.
Section 3.4 briefly discusses the theory for many symbols on larger lattices.

§ 2.2 Connecting Operators

2.2.1 Connecting operators and ordering matrices

This section derives connecting operators and investigates their properties.
For clarity, two symbols on 2× 2 lattice Z2×2 are examined first. Section 3.4
addresses more general situations.

Let A2 and B2 be defined as in (3.1.1)∼(2.1.4). The column matrices Ã2

and B̃2 of A2 and B2 are defined by

(2.2.1) Ã2 =




a11 a21 a12 a22

a31 a41 a32 a42

a13 a23 a14 a24

a33 a43 a34 a44


 =

[
Ã2;1 Ã2;2

Ã2;3 Ã2;4

]
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and

(2.2.2) B̃2 =




b11 b21 b12 b22

b31 b41 b32 b42

b13 b23 b14 b24

b33 b43 b34 b44


 =

[
B̃2;1 B̃2;2

B̃2;3 B̃2;4

]

, respectively.
For matrices of higher order n ≥ 2, An, An+1 and An+1;α are defined as

in (2.1.5)∼(2.1.7).
For matrix multiplication, the indices of An;α are conveniently expressed

as

(2.2.3) An =

[
An;11 An;12

An;21 An;22

]
.

Clearly, An;α = An;j1j2 , where

(2.2.4) α = α(j1, j2) = 2(j1 − 1) + j2.

For m ≥ 2, the elementary pattern in the entries of Am
n is represented by

An;j1j2An;j2j3 · · ·An;jmjm+1,

where js ∈ {1, 2}. A lexicographic order for multiple indices

Jm+1 = (j1j2 · · · jmjm+1)

is introduced, using

(2.2.5) χ(Jm+1) = 1 +

m∑

s=2

2m−s(js − 1).

Now,

(2.2.6) A(k)
m,n;α = An;j1j2An;j2j3 · · ·An;jmjm+1,

where

(2.2.7) α = α(j1, jm+1) = 2(j1 − 1) + jm+1

and

(2.2.8) k = χ(Jm+1)
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is given in (2.2.5). Notably, (2.2.5) and (2.2.8) do not involve jm+1 but
(2.2.7)does.

Therefore, Am
n can be expressed as

(2.2.9) Am
n =

[
Am,n;1 Am,n;2

Am,n;3 Am,n;4

]
,

where

(2.2.10) Am,n;α =

2m−1∑

k=1

A(k)
m,n;α.

Furthermore,

(2.2.11) Xm,n;α = (A(k)
m,n;α)t

1≤k≤2m−1 .

1 ≤ k ≤ 2m−1, Xm,n;α is a 2m−1 column-vector that consists of all elementary
patterns in Am,n;α. The ordering matrix Xm,n of Am

n is now defined by

(2.2.12) Xm,n =

[
Xm,n;1 Xm,n;2

Xm,n;3 Xm,n;4

]
.

The ordering matrix Xm,n allows the elementary patterns to be tracked
during the reduction from Am

n+1 to Am
n . This careful book-keeping provides

a systematic way to generate the admissible patterns and later, lower-bound
estimates of spatial entropy.

The following simplest example is studied first to illustrate the above
concept.

Example 2.1. For m = 2, the following can easily be verified;

(2.2.13) A2
n =

[
A2

n;11 + An;12An;21 An;11An;12 + An;12An;22

An;21An;11 + An;22An;21 An;21An;12 + A2
n;22

]
,

and

(2.2.14)

A
(1)
2,n;1 = A2

n;11, A
(2)
2,n;1 = An;12An;21,

A
(1)
2,n;2 = An;11An;12, A

(2)
2,n;2 = An;12An;22,

A
(1)
2,n;3 = An;21An;11, A

(2)
2,n;3 = An;22An;21,

A
(1)
2,n;4 = An;21An;12, A

(2)
2,n;4 = A2

n;22.





.

Therefore,

(2.2.15)

X2,n;1 =

[
A2

n;11

An;12An;21

]
, X2,n;2 =

[
An;11An,12

An;12An;22

]
,

X2,n;3 =

[
An;21An;11

An;22An;21

]
, X2,n;4 =

[
An;21An,12

A2
n;22

]
.





.
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Applying (2.1.7), and by a straightforward computation,

(2.2.16) X2,n+1;1 =

[
A2

n+1;11

An+1;12An+1;21

]

=




[
b2
11A

2
n;1 + b12b13An;2An;3 b11b12An;1An;2 + b12b14An;2An;4

b13b11An;3An;1 + b14b13An;4An;3 b13b12An;3An;2 + b2
14A

2
n;4

]

[
b21b31A

2
n;1 + b22b33An;2An;3 b21b32An;1An;2 + b22b34An;2An;4

b23b31An;3An;1 + b24b33An;4An;3 b23b32An;3An;2 + b24b34A
2
n;4

]




Clearly, the j1j2 entries of A2
n+1;11 and An+1;12An+1;21 in (3.2.9) consist of

entries of X2,n;α in (3.2.7) with α = α(j1, j2) in (2.2.4). Moreover, the terms
in (3.2.9) can be rearranged in terms of X2,n;α by exchanging the second row
in the first matrix with the first row in the second matrix in (3.2.9) as follows.
(2.2.17)



[
b2
11 b12b13

b21b31 b22b33

] [
A2

n;1

An;2An;3

] [
b11b12 b12b14

b21b32 b22b34

] [
An;1An;2

An;2An;4

]

[
b13b11 b14b13

b23b31 b24b33

] [
An;3An;1

An;4An;3

] [
b13b12 b2

14

b23b32 b24b34

] [
An;3An;2

A2
n;4

]




Applying (3.1.1), (3.1.2) and (3.2.2), (3.2.10) can be rewritten as



[
a2

11 a12a21

a13a31 a14a41

] [
A2

n;11

An;12An;21

] [
a11a12 a12a22

a13a32 a14a42

] [
An;11An;12

An;12An;22

]

[
a21a11 a22a21

a23a31 a24a41

] [
An;21An;11

An;22An;21

] [
a21a12 a2

22

a23a32 a24a42

] [
An;21An;12

A2
n;22

]




(2.2.18) =

[
(B2;11 ◦ Ã2;11)X2,n;1 (B2;11 ◦ Ã2;12)X2,n;2

(B2;12 ◦ Ã2;11)X2,n;3 (B2;12 ◦ Ã2;12)X2,n;4

]
.

Therefore, after the entries of X2,n+1;1 as in (3.2.10) or (3.2.15) have been
permuted, X2,n+1;1 can be represented by a 2 × 2 matrix

(2.2.19) X̂2,n+1;1 ≡ P(X2,n+1;1) ≡
[

X2,n+1;1;1 X2,n+1;1;2

X2,n+1;1;3 X2,n+1;1;4

]
,

where

(2.2.20)

X2,n+1;1;1 = S2;11X2,n;1,

X2,n+1;1;2 = S2;12X2,n;2,

X2,n+1;1;3 = S2;13X2,n;3,

X2,n+1;1;4 = S2;14X2,n;4




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and

(2.2.21)

S2;11 = B2;11 ◦ Ã2;11 ≡ C2;11,

S2;12 = B2;11 ◦ Ã2;12 ≡ C2;12,

S2;13 = B2;12 ◦ Ã2;11 ≡ C2;21,

S2;14 = B2;12 ◦ Ã2;12 ≡ C2;22,





.

The above derivation indicates that X2,n+1;α can be reduced to X2,n;β

via multiplication with connecting matrices C2;αβ. This procedure can be
extended to introduce the connecting operator Cm = [ Cm;αβ ], for all m ≥ 2.

Before Cm is introduced, three products of matrices are defined as follows.

Definition 2.2. For any two matrices M = (Mij) and N = (Nkl), the Kro-
necker product (tensor product) M ⊗ N of M and N is defined by

(2.2.22) M ⊗ N = (MijN).

For any n ≥ 1,
⊗Nn = N ⊗ N ⊗ · · · ⊗ N,

n-times in N.
Next, for any two m × m matrices

P = (Pij) and Q = (Qij)

where Pij and Qij are numbers or matrices, the Hadamard product P ◦ Q is
defined by

(2.2.23) P ◦ Q = (Pij · Qij),

where the product Pij · Qij of Pij and Qij may be a multiplication between
numbers, between numbers and matrices or between matrices whenever it is
well-defined.

Finally, product ⊗̂ is defined as follows. For any 4 × 4 matrix

(2.2.24) M2 =




m11 m12 m21 m22

m13 m14 m23 m24

m31 m32 m41 m42

m33 m34 m43 m44


 =

[
M2;1 M2;2

M2;3 M2;4

]

and any 2 × 2 matrix

(2.2.25) N =

[
N1 N2

N3 N4

]
,



44 Pattern Generation Problems

where mij are numbers and Nk are numbers or matrices, for 1 ≤ i, j, k ≤ 4,
define

(2.2.26) M2⊗̂N =




m11N1 m12N2 m21N1 m22N2

m13N3 m14N4 m23N3 m24N4

m31N1 m32N2 m41N1 m42N2

m33N3 m34N4 m43N3 m44N4


 .

Furthermore, for n ≥ 1, the n + 1 th order of transition matrix of M2 is
defined by

Mn+1 ≡ ⊗̂Mn
2 = M2⊗̂M2⊗̂ · · · ⊗̂M2,

n-times in M2. More precisely,

Mn+1 = M2⊗̂(⊗̂Mn−1
2 ) =

[
M2;1 ◦ (⊗̂Mn−1

2 ) M2;2 ◦ (⊗̂Mn−1
2 )

M2;3 ◦ (⊗̂Mn−1
2 ) M2;4 ◦ (⊗̂Mn−1

2 )

]

(2.2.27)

=




m11Mn;1 m12Mn;2 m21Mn;1 m22Mn;2

m13Mn;3 m14Mn;4 m23Mn;3 m24Mn;4

m31Mn;1 m32Mn;2 m41Mn;1 m42Mn;2

m33Mn;3 m34Mn;4 m43Mn;3 m44Mn;4


 =

[
Mn+1;1 Mn+1;2

Mn+1;3 Mn+1;4

]
,

where

Mn = ⊗̂Mn−1
2 =

[
Mn;1 Mn;2

Mn;3 Mn;4

]
.

Here, the following convention is adopted,

⊗̂M0
2 = E2×2.

Definition 2.3. For m ≥ 2, define
(2.2.28)

Cm =




Cm;11 Cm;12 Cm;13 Cm;14

Cm;21 Cm;22 Cm;23 Cm;24

Cm;31 Cm;32 Cm;33 Cm;34

Cm;41 Cm;42 Cm;43 Cm;44


 =




Sm;11 Sm;12 Sm;21 Sm;22

Sm;13 Sm;14 Sm;23 Sm;24

Sm;31 Sm;32 Sm;41 Sm;42

Sm;33 Sm;34 Sm;43 Sm;44


 ,

where
(2.2.29)

Cm;αβ =

([
aα1 aα2

aα3 aα4

]
◦
(
⊗̂
[

B2;1 B2;2

B2;3 B2;4

]m−2
)

2×2

)

2m−1×2m−1

◦
(

E2m−2×2m−2 ⊗
([

a1β a2β

a3β a4β

]))

2m−1×2m−1

.
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Similarly, for B2, define
(2.2.30)

Um =




Um;11 Um;12 Um;13 Um;14

Um;21 Um;22 Um;23 Um;24

Um;31 Um;32 Um;33 Um;34

Um;41 Um;42 Um;43 Um;44


 =




Wm;11 Wm;12 Wm;21 Wm;22

Wm;13 Wm;14 Wm;23 Wm;24

Wm;31 Wm;32 Wm;41 Wm;42

Wm;33 Wm;34 Wm;43 Wm;44


 ,

where
(2.2.31)

Um;αβ =

([
bα1 bα2

bα3 bα4

]
◦
(
⊗̂
[

A2;1 A2;2

A2;3 A2;4

]m−2
)

2×2

)

2m−1×2m−1

◦
(

E2m−2×2m−2 ⊗
([

b1β b2β

b3β b4β

]))

2m−1×2m−1

.

Sm = [Sm;αβ ] and Wm = [Wm;αβ ].

Now Cm+1 can be found from Cm by a recursive formula, as in (2.1.7).

Theorem 2.4. For any m ≥ 2 and 1 ≤ α, β ≤ 4,

(2.2.32) Cm+1;αβ =

[
aα1Cm;1β aα2Cm;2β

aα3Cm;3β aα4Cm;4β

]
,

and

(2.2.33) Um+1;αβ =

[
bα1Um;1β bα2Um;2β

bα3Um;3β bα4Um;4β

]
.

Proof. By (3.2.43),

⊗̂Bm−1
2 = B2⊗̂(⊗̂Bm−2

2 ) =

[
B2;1 ◦ (⊗̂Bm−2

2 ) B2;2 ◦ (⊗̂Bm−2
2 )

B2;3 ◦ (⊗̂Bm−2
2 ) B2;4 ◦ (⊗̂Bm−2

2 )

]
.

Therefore,

Cm+1;αβ = (B2;α ◦ (⊗̂Bm−1
2 )) ◦ (E2m−1×2m−1 ⊗ Ã2;β)

=

[
aα1(B2;1 ◦ ⊗̂Bm−2

2 ) aα2(B2;2 ◦ ⊗̂Bm−2
2 )

aα3(B2;3 ◦ ⊗̂Bm−2
2 ) aα4(B2;4 ◦ ⊗̂Bm−2

2 )

]
◦ (E2m−1×2m−1 ⊗ Ã2;β)

=

[
aα1[(B2;1 ◦ ⊗̂Bm−2

2 ) ◦ (E2m−2×2m−2 ⊗ Ã2;β)] aα2[(B2;2 ◦ ⊗̂Bm−2
2 ) ◦ (E2m−2×2m−2 ⊗ Ã2;β)

aα3[(B2;3 ◦ ⊗̂Bm−2
2 ) ◦ (E2m−2×2m−2 ⊗ Ã2;β)] aα4[(B2;4 ◦ ⊗̂Bm−2

2 ) ◦ (E2m−2×2m−2 ⊗ Ã2;β)]

]

=

[
aα1Cm;1β aα2Cm;2β

aα3Cm;3β aα4Cm;4β

]
.
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A similar result also holds for Um;αβ; the details are omitted here. The proof
is complete.

Notably, (3.2.51) implies Cm;ij is ai1i2ai2i3 · · ·aimim+1 with i1 = i and
im+1 = j. Cm;ij consist of all words(or paths) of length m starting from i and
ending at j. Indeed, the entries of Cm and Bm+1 are the same. However, the
arrangements are different. Cm can also be used to study the primitivity of
An, n ≥ 2, as in [6].

That the recursive formula (2.1.24) holds remains to be shown. Indeed,
in (2.2.6) substituting n for n + 1 and using (2.1.7),

(2.2.34)

A
(k)
m,n+1;α

= An+1;j1j2An+1;j2j3 · · ·An+1,jmjm+1

=
m∏

i=1

[
bαi1An;11 bαi2An;12

bαi3An;21 bαi4An;22

]

where αi = α(ji, ji+1), for 1 ≤ i ≤ m. After m matrix multiplications are
executed in (3.2.49),

(2.2.35) A
(k)
m,n+1;α =

[
A

(k)
m,n+1;α;1 A

(k)
m,n+1;α;2

A
(k)
m,n+1;α;3 A

(k)
m,n+1;α;4

]

where

(2.2.36) A
(k)
m,n+1;α;β =

2m−1∑

l=1

K(m; α, β; k, l)A
(l)
m,n;β

is a linear combination of A
(l)
m,n;β with the coefficients K(m; α, β; k, l) which

are products of bαlj , 1 ≤ l ≤ m. K(m; α, β; k, l) must be studied in more
details.

Note that

(2.2.37) Am
n+1 =

[
Am,n+1;1 Am,n+1;2

Am,n+1;3 Am,n+1;4

]

=




2m−1∑

k=1

A
(k)
m,n+1;1

2m−1∑

k=1

A
(k)
m,n+1;2

2m−1∑

k=1

A
(k)
m,n+1;3

2m−1∑

k=1

A
(k)
m,n+1;4



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=




∑2m−1

k=1 A
(k)
m,n+1;1;1

∑2m−1

k=1 A
(k)
m,n+1;1;2

∑2m−1

k=1 A
(k)
m,n+1;2;1

∑2m−1

k=1 A
(k)
m,n+1;2;2∑2m−1

k=1 A
(k)
m,n+1;1;3

∑2m−1

k=1 A
(k)
m,n+1;1;4

∑2m−1

k=1 A
(k)
m,n+1;2;3

∑2m−1

k=1 A
(k)
m,n+1;2;4∑2m−1

k=1 A
(k)
m,n+1;3;1

∑2m−1

k=1 A
(k)
m,n+1;3;2

∑2m−1

k=1 A
(k)
m,n+1;4;1

∑2m−1

k=1 A
(k)
m,n+1;4;2∑2m−1

k=1 A
(k)
m,n+1;3;3

∑2m−1

k=1 A
(k)
m,n+1;3;4

∑2m−1

k=1 A
(k)
m,n+1;4;3

∑2m−1

k=1 A
(k)
m,n+1;4;4




Now, Xm,n+1;α;β is defined as

(2.2.38) Xm,n+1;α;β = (A
(k)
m,n+1;α;β)t.

As in (3.2.10), the entries of Xm,n+1;α are rearranged into a new matrix

(2.2.39) X̂m,n+1;α ≡ P(Xm,n+1;α) ≡
[

Xm,n+1;α;1 Xm,n+1;α;2

Xm,n+1;α;3 Xm,n+1;α;4

]
.

From (2.2.36) and (3.2.54),

(2.2.40) Xm,n+1;α;β = K(m; α, β)Xm,n;β

where
K(m; α, β) = (K(m; α, β; k, l)), 1 ≤ k, l ≤ 2m−1,

is a 2m−1×2m−1 matrix. Now, K(m; α, β) = Sm;αβ must be shown as follows.

Theorem 2.5. For any m ≥ 2 and n ≥ 2, let Sm;αβ be given as in (3.2.44)
and (3.2.45). Then,

K(m; α, β) = Sm;αβ ,

i.e.,

(2.2.41) Xm,n+1;α;β = Sm;αβXm,n;β,

or equivalently, the recursive formula (2.1.24) holds. That is,

(2.2.42) A
(k)
m,n+1;α =




2m−1∑

l=1

(Sm;α1)klA
(l)
m,n;1

2m−1∑

l=1

(Sm;α2)klA
(l)
m,n;2

2m−1∑

l=1

(Sm;α3)klA
(l)
m,n;3

2m−1∑

l=1

(Sm;α4)klA
(l)
m,n;4




.

Moreover, for n = 1,

(2.2.43) A
(k)
m,2;α =




2m−1∑

l=1

(Sm;α1)kl

2m−1∑

l=1

(Sm;α2)kl

2m−1∑

l=1

(Sm;α3)kl

2m−1∑

l=1

(Sm;α4)kl




for any 1 ≤ k ≤ 2m−1 and α ∈ {1, 2, 3, 4}.
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Proof. The result is proven by the induction on m.
When m = 2, and α = 1, (3.2.59) was proven as in Example 2.1. The

case with α = 2, 3 and 4 can also be proved analogously; the details are
omitted.

Now, (3.2.59) ia assumed to hold for m; the goal is to show that it also
holds for m + 1. Since

Am+1
n+1 = An+1 · Am

n+1 =

[
An+1;1 An+1;2

An+1;3 An+1;4

] [
Am,n+1,1 Am,n+1;2

Am,n+1,3 Am,n+1;4

]
,

(2.2.11) implies

Xm+1,n+1;1 =

[
An+1;1Xm,n+1;1

An+1;2Xm,n+1;3

]
, Xm+1,n+1;2 =

[
An+1;1Xm,n+1;2

An+1;2Xm,n+1;4

]
,

Xm+1,n+1;3 =

[
An+1;3Xm,n+1;1

An+1;4Xm,n+1;3

]
, and Xm+1,n+1;4 =

[
An+1;3Xm,n+1;2

An+1;4Xm,n+1;4

]
.

For α = 1, by induction on m,

(An+1;1P(Xm,n+1;1), An+1;2P(Xm,n+1;3))
t

=




[
b11An;1 b12An;2

b13An;3 b14An;4

] [
Sm;11Xm,n;1 Sm;12Xm,n;2

Sm;13Xm,n;3 Sm;14Xm,n;4

]

[
b21An;1 b22An;2

b23An;3 b24An;4

] [
Sm;31Xm,n;1 Sm;32Xm,n;2

Sm;33Xm,n;3 Sm;34Xm,n;4

]




=




[
b11Sm;11An;1Xm,n;1 + b12Sm;13An;2Xm,n;3 b11Sm;12An;1Xm,n;2 + b12Sm;14An;2Xm,n;4

b13Sm;11An;3Xm,n;1 + b14Sm;13An;4Xm,n;3 b13Sm;12An;3Xm,n;2 + b14Sm;14An;4Xm,n;4

]

[
b21Sm;31An;1Xm,n;1 + b22Sm;33An;2Xm,n;3 b21Sm;32An;1Xm,n;2 + b22Sm;34An;2Xm,n;4

b23Sm;31An;3Xm,n;1 + b24Sm;33An;4Xm,n;3 b23Sm;32An;3Xm,n;2 + b24Sm;34An;4Xm,n;4

]




Hence Xm+1,n+1;1 can be represented by a matrix

X̂m+1,n+1;1 ≡ P(Xm+1,n+1;1) ≡
[

Xm+1,n+1;1,1 Xm+1,n+1;1,2

Xm+1,n+1;1,3 Xm+1,n+1;1,4

]

=




[
b11Sm;11 b12Sm;13

b21Sm;31 b22Sm;33

] [
An;1Xm,n;1

An;2Xm,n;3

] [
b11Sm;12 b12Sm;14

b21Sm;32 b22Sm;34

] [
An;1Xm,n;2

An;2Xm,n;4

]

[
b13Sm;11 b14Sm;13

b23Sm;31 b24Sm;33

] [
An;3Xm,n;1

An;4Xm,n;3

] [
b13Sm;12 b14Sm;14

b23Sm;32 b24Sm;34

] [
An;3Xm,n;2

An;4Xm,n;4

]



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Once again, (3.1.1), (3.1.2) and (3.2.2) can be used to recast the matrix
X̂m+1,n+1;1 as




[
a11Cm;11 a12Cm;21

a13Cm;31 a14Cm;41

]
Xm+1,n;1

[
a11Cm;12 a12Cm;22

a13Cm;32 a14Cm;42

]
Xm+1,n;2

[
a21Cm;11 a22Cm;21

a23Cm;31 a24Cm;41

]
Xm+1,n;3

[
a21Cm;12 a22Cm;22

a23Cm;32 a24Cm;42

]
Xm+1,n;4




According to Theorem 2.4, the above matrix becomes

=

[
Cm+1;11Xm+1,n;1 Cm+1;12Xm+1,n;2

Cm+1;21Xm+1,n;3 Cm+1;22Xm+1,n;4

]
=

[
Sm+1;11Xm+1,n;1 Sm+1;12Xm+1,n;2

Sm+1;13Xm+1,n;3 Sm+1;14Xm+1,n;4

]
.

The cases with α = 2, 3 and 4 can also be considered analogously (3.2.59)
follows.

Next, (3.2.60) follows easily from (2.2.35), (2.2.36) and (3.2.59).
Equation (3.2.61) remains to be shown. If the 2 × 2 matrix

(2.2.44) A1 ≡
[

A1;11 A1;12

A1;21 A1;22

]
≡
[

A1;1 A1;2

A1;3 A1;4

]
≡
[

1 1
1 1

]

is introduced, then the previous argument also hold for n = 1. Hence, (3.2.61)
holds. The proof is complete.

For any positive integer p ≥ 2, applying Theorem 2.5 p times permits the
elementary patterns of Am

n+p to be expressed as the product of a sequence
of Sm;βiβi+1

and the elementary patterns in Am
n . The elementary pattern in

Am
n+p is first studied.

For any p ≥ 2 and 1 ≤ q ≤ p − 1, define

(2.2.45) A
(k)
m,n+p;α;β1;β2;··· ;βq

=

[
A

(k)
m,n+p;α;β1;β2;··· ;βq;1

A
(k)
m,n+p;α;β1;β2;··· ;βq;2

A
(k)
m,n+p;α;β1;β2;··· ;βq;3

A
(k)
m,n+p;α;β1;β2;··· ;βq;4

]
.

Then

(2.2.46) A
(k)
m,n+p;α;β1;β2;··· ;βp

=

2m−1∑

l1=1

· · ·
2m−1∑

lp=1

(

p∏

i=1

K(m; βi−1, βi; li−1, li))A
(lp)
m,n;βp

,

where β0 = α and l0 = k can be easily verified. Therefore, for any p ≥ 1, a
generalization for (3.2.53) can be found for Am

n+p as a 2p+1 × 2p+1 matrix

(2.2.47) Am
n+p =

[
Am,n+p;α;β1;β2··· ;βp

]
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where

(2.2.48) Am,n+p;α;β1;β2··· ;βp
=

2m−1∑

k=1

A
(k)
m,n;α;β1;β2··· ;βp

.

In particular, if α; β1, β2 · · · , βp ∈ {1, 4}, then Am,n+p;α;β1;β2··· ;βp
lies on the

diagonal of Am
n+p in (2.2.47).

Now, define

(2.2.49) Xm,n+p;α;β1;β2;··· ;βp
= (A

(k)
m,n+p;α;β1;β2;··· ;βp

)t.

Therefore, Theorem 2.5 can be generalized to

Theorem 2.6. For any m ≥ 2, n ≥ 2 and p ≥ 1,

(2.2.50) Xm,n+p;α;β1;β2··· ;βp
= Sm;αβ1Sm;β1β2 · · ·Sm;βp−1βp

Xm,n;βp

where α, βi ∈ {1, 2, 3, 4} and 1 ≤ i ≤ p.

Proof. From (2.2.46), (3.2.58) and (3.2.60),

A
(k)
m,n+p;α;β1;β2;··· ;βp

=
2m−1∑

l1=1

· · ·
2m−1∑

lp=1

(

p∏

i=1

K(m; βi−1, βi; li−1, li))A
(lp)
m,n;βp

=

2m−1∑

l1=1

· · ·
2m−1∑

lp=1

(

p∏

i=1

(Sm;βi−1βi
)li−1li)A

(lp)
m,n;βp

=
2m−1∑

l1=1

· · ·
2m−1∑

lp=1

(Sm;β0β1)l0l1(Sm;β1β2)l1l2 · · · (Sm;βp−1βp
)lp−1lpA

(lp)
m,n;βp

=

2m−1∑

lp=1

(Sm;β0β1Sm;β1β2 · · ·Sm;βp−1βp
)l0lpA

(lp)
m,n;βp

=
2m−1∑

lp=1

(Sm;αβ1Sm;β1β2 · · ·Sm;βp−1βp
)klpA

(lp)
m,n;βp

is derived. By (2.2.49), then

Xm,n+p;α;β1;β2;··· ;βp
= (A

(k)
m,n+p;α;β1;β2;··· ;βp

)t

= (
2m−1∑

lp=1

(Sm;αβ1Sm;β1β2 · · ·Sm;βp−1βp
)klpA

(lp)
m,n;βp

)t

= Sm;αβ1Sm;β1β2 · · ·Sm;βp−1βp
Xm,n;βp

.

The proof is complete.
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2.2.2 Lower bound of entropy

In this subsection, the connecting operator Cm is employed to estimate the
lower bound of entropy, and in particular, to verify the positivity of entropy.

First, recall some properties of Γm,n and spatial entropy.
Γm,n satisfies the subadditivity in m and n:

(2.2.51) Γm1+m2,n ≤ Γm1,nΓm2,n,

and

(2.2.52) Γm,n1+n2 ≤ Γm,n1Γm,n2 ,

or equivalently,

(2.2.53) |Am1+m2
n | ≤ |Am1

n ||Am2
n |

and

(2.2.54) |Am
n1+n2

| ≤ |Am
n1
||Am

n2
|,

for positive integers m, n, m1, n1, m2 and n2. Here

(2.2.55) A1 =

[
1 1
1 1

]

is applied.
The subadditivity property implies

(2.2.56) lim sup
m,n→∞

1

mn
log |Am

n | ≤
1

pq
log |Ap−1

q |

for any p and q ≥ 2. Therefore,

h(A2) = lim
m,n→∞

1

mn
log |Am

n |

exists, and equals

(2.2.57) inf
p,q≥2

1

pq
log |Ap−1

q |.

In particular, h(A2) has an upper bound

(2.2.58) h(A2) ≤
1

pq
log |Ap−1

q |
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for any p and q ≥ 2.
Similarly, when A2 is horizontal (or vertical) transition matrix for any

m ≥ 1 and q ≥ 2,

(2.2.59) lim sup
n→∞

1

n
log |Am

n | ≤
1

q
log |Am

q |.

Hence, the spatial entropy is hm(A2) on an infinite lattice Zm+1×∞ (or Z∞×m+1)
and

(2.2.60) hm(A2) ≡ lim
n→∞

1

n
log |Am

n | = inf
q≥2

1

q
log |Am

q |.

For the proof of the above results, see [15].
Furthermore, by Perron-Frobenius theorem,

(2.2.61) lim
m→∞

1

m
log |Am

n | = log ρ(An).

Therefore, for any n ≥ 2

(2.2.62) h(A2) ≤
1

n
log ρ(An).

For a proof of (2.2.61), see [4], [30].
The following notation is adopted.

Definition 2.7. Let X = (X1, · · · , XM)t, where Xk are N × N matrices.
Define the summation of Xk by

(2.2.63) |X| =
N∑

k=1

Xk.

If M = [Mij ] is a M × M matrix, then

(2.2.64) |MX| =

M∑

i=1

M∑

j=1

MijXj .

Note that, (2.2.63) implies

(2.2.65) |Xm,n;α| =
2m−1∑

k=1

A(k)
m,n;α = Am,n;α.

As usual, the set of all matrices with the same order can be partially ordered.
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Definition 2.8. Let M = [Mij ] and N = [Nij ] be two M × M matrices,
M ≥ N if Mij ≥ Nij for all 1 ≤ i, j ≤ M .

Notably, if A2 ≥ A′
2 then An ≥ A′

n for all n ≥ 2. Therefore, h(A2) ≥
h(A′

2). Hence, the spatial entropy as a function of A2 is monotonic with
respect to the partial order ≥.

Definition 2.9. A K + 1 multiple index

(2.2.66) BK ≡ (β1β2 · · ·βKβK+1)

is called a (periodic) cycle if

(2.2.67) βK+1 = β1.

It is called a diagonal cycle if (2.2.67) holds and

(2.2.68) βk ∈ {1, 4}

for each 1 ≤ k ≤ K + 1.
For a diagonal cycle (2.2.66), denote

(2.2.69) β̄K = β1; β2; · · · ; βK

and

(2.2.70) β̄n
K = β̄K ; β̄K ; · · · ; β̄K . (n times)

First, prove the following Lemma.

Lemma 2.10. Let m ≥ 2, K ≥ 1, BK be a diagonal cycle. Then, for any
n ≥ 1,

(2.2.71) ρ(Am
nK+2) ≥ ρ(|(Sm;β1β2Sm;β2β3 · · ·Sm;βKβK+1

)nXm,2;β1 |)

Proof. Since BK is a periodic cycle, Theorem 2.6 implies

(2.2.72) Xm,nK+2;β̄n
K

= (Sm;β1β2Sm;β2β3 · · ·Sm;βKβK+1
)nXm,2;β1.

Furthermore BK is diagonal, and |Xm,nK+2;β̄n
k
| = Am,nK+2;β̄n

k
lies on the di-

agonal part as in (2.2.47) with n + p = nK + 2, therefore

(2.2.73) ρ(Am
nK+2) ≥ ρ(|Xm,nK+2;β̄n

K
|).

Therefore, (2.2.71) follows from (2.2.72) and (2.2.73).
The proof is complete.
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The following lemma is valuable in studying maximum eigenvalue of
(Sm;β1β2 · · ·Sm;βKβK+1

)nXm,2;β1 in (2.2.71).

Lemma 2.11. For any m ≥ 2, 1 ≤ k ≤ 2m−1 and α ∈ {1, 4}, if

(2.2.74) tr(A
(k)
m,2;α) = 0,

then for all 1 ≤ l ≤ 2m−1,

(2.2.75) (Sm,α1)kl = 0 and (Sm;α4)kl = 0,

i.e., the k-th rows of matrices Sm;α1 and Sm;α4 are zeros. Furthermore, for
any diagonal cycle BK , let U = (u1, u2, · · · , u2m−1) be an eigenvector of
Sm;β1β2Sm;β2β3 · · ·Sm;βKβ1, if uk 6= 0 for some 1 ≤ k ≤ 2m−1, then

(2.2.76) tr(A
(k)
m,2;α) > 0.

Proof. Since A
(k)
m,2;α can be expressed as in (3.2.61). Therefore, tr(A

(k)
m,2;α) = 0

if and only if (2.2.75) holds for all 1 ≤ l ≤ 2m−1. The second part of the
lemma follows easily from the first part.

The proof is complete.

By Lemma 2.10 and Lemma 2.11, the lower bound of entropy can be
obtained as follows.

Theorem 2.12. Let β1β2 · · ·βKβ1 be a diagonal cycle. Then for any m ≥ 2,

(2.2.77) h(A2) ≥
1

mK
log ρ(Sm;β1β2Sm;β2β3 · · ·Sm;βKβ1).

and

(2.2.78) h(A2) ≥
1

mK
log ρ(Wm;β1β2Wm;β2β3 · · ·Wm;βKβ1).

In particular, if a diagonal cycle β1β2 · · ·βKβ1 exists and m ≥ 2 such that

ρ(Sm;β1β2Sm;β2β3 · · ·Sm;βKβ1) > 1,

or

ρ(Wm;β1β2Wm;β2β3 · · ·Wm;βKβ1) > 1

then h(A2) > 0.
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Proof. First, show that

(2.2.79) h(A2) ≥
1

mK
lim sup

n→∞
(log ρ(|(Sm;β1β2Sm;β2β3 · · ·Sm;βKβ1)

nXm,2;β1|).

Indeed, from (2.1.11) and (2.2.71),

h(A2) = lim
n→∞

1

nK + 2
log ρ(AnK+2)

= lim
n→∞

1

m(nK + 2)
log ρ(Am

nK+2)

≥ 1

mK
lim sup

n→∞

1

n
(log ρ(|(Sm;β1β2 · · ·Sm;βKβ1)

nXm,2;β1|)).

Now, the following remains to be shown
(2.2.80)

lim sup
n→∞

1

n
(log ρ(|(Sm;β1β2 · · ·Sm;βKβ1)

nXm,2;β1 |) = log ρ(Sm;β1β2 · · ·Sm;βKβ1).

Since Xm,2;β1 = (A
(k)
m,2;β1

)t, if tr(A
(k)
m,2;β1

) = 0 then Lemma 2.11 implies the
k-th row of Sm;β1β2 is zero which implies that the k-th row of (Sm;β1β2 · · ·Sm;βKβ1)

n

is also zero for any n ≥ 1.
If tr(A

(k)
m,2;β1

) = 0 for all 1 ≤ k ≤ 2m−1, then Sm;β1β2 ≡ 0. (2.2.80) holds
trivially.

Now, assume that 1 ≤ k′ ≤ 2m−1 exists such that tr(A
(k′)
m,2;β1

) > 0. Define

(2.2.81) X̂ = (A
(k′)
m,2;β1

)t = (X̂1, · · · , X̂M),

where tr(A
(k′)
m,2;β1

) > 0 for 1 ≤ k′ ≤ M ≤ 2m−1. Then ρ(X̂j) > 0 for 1 ≤ j ≤
M .

Let M be the M × M sub-matrix of Sm;β1β2 · · ·Sm;βKβ1 from which the

k-th row and k-th column have been removed whenever tr(A
(k)
m,2;β1

) = 0 for
1 ≤ k ≤ 2m−1.

Clearly,

(2.2.82) |(Sm;β1β2 · · ·Sm;βKβ1)
nXm,2;β1| = |MnX̂|,

and

(2.2.83) ρ(Sm;β1β2 · · ·Sm;βKβ1) = ρ(M).

The proof of (2.2.80) comprise three steps, according to

(i) M is primitive,
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(ii) M is irreducible, and

(iii) M is reducible.

(i) M is primitive. Then by Perron-Frobenius Theorem the maximum
eigenvalue ρ(M) of M is unique with maximum modulus, i.e.

(2.2.84) ρ(M) = λ1 > |λj|,

for all 2 ≤ j ≤ M , where λj are eigenvalues of M. Moreover, a positive
eigenvector v1 = (v1, v2, · · · , vM)t is associated with λ1 [26], [27]. Fur-
thermore, Jordan canonical form theorem states that a non-singular
matrix P = [Pij ]M×M exists, such that the real Jordan canonical form
of M is

(2.2.85) M̂ ≡ PMP−1 =




λ1 0 · · · 0
0 Jn2 · · · 0
...

...
. . .

...
0 · · · · · · Jnq


 ,

where Jnk
, 2 ≤ k ≤ q are real Jordan blocks and the associated eigen-

value λk of Jnk
satisfies (2.2.84). Moreover, the positivity of eigenvector

v1 implies that P can be chosen such that

(2.2.86)

M∑

i=1

Pij = 1

and

(2.2.87) P1j > 0

for all 1 ≤ j ≤ M . Therefore, by (2.2.86)

|MnX̂| = |PMnX̂| = |PMnP−1PX̂|
= |(PMP−1)nPX̂| = |M̂nPX̂|

= λ1
n{

M∑

j=1

P1jX̂j +

M∑

j=1

qn,jX̂j}

where

(2.2.88) lim
n→∞

qn,j = 0,

for all 1 ≤ j ≤ M , by (2.2.84).
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Hence, by (2.2.87) and (2.2.88),

(2.2.89) lim
n→∞

1

n
log ρ(|MnX̂|) = log λ1.

Combining with (2.2.82), (2.2.83) and (2.2.89), (2.2.80) follows.

(ii) M is irreducible.

If M is irreducible but imprimitive, then k ≥ 2 exists, such that

λ1 = |λ2| = · · · = |λk| > |λj|

for all j > k. Then, by applying a permutation, M can be expressed as

(2.2.90) M =




0 M12 0 · · · 0
0 0 M23 · · · 0
...

...
...

. . .
...

0
...

... 0 Mk−1,k

Mk1 0 · · · · · · 0




,

and,

(2.2.91) Mk =




M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...
0 · · · 0 Mk


 ,

where Mj = Mj,j+1Mj+1,j+2 · · ·Mj−1,j is primitive with the maximum
eigenvalue λk

1, see [26], [27]. Hence, by the same argument as in (i)

lim
n→∞

1

n
log ρ(|MnkX̂|) = λk

1,

(2.2.80) follows.

(iii) M is reducible.

In this case, by applying a permutation, M can be expressed as a block
upper triangular matrix:

(2.2.92) M =




M11 M12 · · · · · · M1k

0 M22 · · · · · · M2k

0 0 · · · . . . · · ·
0 0 · · · 0 Mkk


 ,
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where Mii is either irreducible or zero. Furthermore,

σ(M) =
k⋃

j=1

σ(Mjj),

where σ(M) and σ(Mjj) are the sets of eigenvalues of M and Mjj,
respectively. In particular, 1 ≤ j ≤ k exists, such that

(2.2.93) ρ(Mjj) = ρ(M) = λ1.

[26], [27]. Therefore, applying (2.2.83), (2.2.93) and the same argument
as in (ii) yields (2.2.80).

The proof is complete.

Definition 2.13. Let D denote the set of all diagonal cycle:

D = {β1β2 · · ·βKβK+1|β1β2 · · ·βKβK+1 satisfies (2.2.67) and (2.2.68)},

define

(2.2.94) h∗(A2) = sup
m≥2,β1β2···βK+1∈D

1

mK
log ρ(Sm;β1β2Sm;β2β3 · · ·Sm;βKβ1).

and

(2.2.95) h′
∗(A2) = sup

m≥2, β1···βK∈D

1

mK
log ρ(Wm;β1β2Wm;β2β3 · · ·Wm;βKβ1).

Then Theorem 2.12 implies

(2.2.96) h(A2) ≥ h∗(A2) and h(A2) ≥ h′
∗(A2).

Knowing whether the equality holds for A2 is of interest, since h∗(A2) and
h′
∗(A2) are more manageable than h(A2). However, a class of A2 has been

found for what equality (2.2.96) holds; details can be found in Example 2.14.
of the next subsection.
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2.2.3 Examples of transition matrices with positive en-

tropy

In this subsection, various examples are studied to elucidate the power of
Theorem 2.12 in verifying that the entropies are positive. First, Golden-
Mean type transition matrices are studied.

Example 2.14. (A) Golden-Mean

When two symbols on two-cell horizontal lattice Z2×1 and vertical lat-
tice Z1×2 are considered and both transition matrices are given by
golden-mean, i.e.,

H1 = V1 =

[
1 1
1 0

]
,

then the (horizontal) transition matrix A2 on Z2×2 is

(2.2.97) A2 =




1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0


 ,

as in [41]. Verifying

(2.2.98) B2 = Ã2 = B̃2 = A2.

is also easy. Furthermore, for any n ≥ 2,

(2.2.99) An+1 =

[
An+1 Bn+1

Cn+1 0

]
=




An Bn An 0
Cn 0 Cn 0
An Bn 0 0
0 0 0 0


 ,

where

An+1 =

[
An Bn

Cn 0

]

with Cn = Bn
t and An

t = An, i.e., An are symmetric for all n ≥ 2.

Moreover, the following two properties hold:

(i) For any m ≥ 2,

(2.2.100) Cm;11 = Am−1,

where

(2.2.101) A1 ≡
[

a11a11 a12a21

a13a31 a14a41

]
,

and
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(ii) for any m ≥ 2,

(2.2.102)
1

m
log ρ(Am−1) ≤ h(A2) ≤

1

m
log ρ(Am).

Therefore,

(2.2.103) h(A2) = h∗(A2) > 0.

The numerical results appears in Example 2.29.

(B) Simplified Golden-Mean.

Consider

(2.2.104) A2 =




1 1 1 0
1 0 0 0
1 0 0 0
0 0 0 0


 ,

(2.2.104) cannot be generated from one-dimensional transition matrices
H1 and V1, as in the Golden-Mean (2.2.97). Equation (2.2.104) is
obtained by letting a23 = a32 = 0 in the Golden-Mean (2.2.97). (2.2.98)
is easily verified, and for any n ≥ 2,

(2.2.105) An+1 =




An
An−1 0

0 0
An−1 0

0 0
0 0
0 0


 .

Furthermore, (i), (ii) and (2.2.103) hold as in (A).

(C) Generally, if A2 satisfies the following three conditions

(C1) B2 = A2,

(C2) a1j = 1 if A2;j 6= 0 for 1 ≤ j ≤ 4,

(C3) Ã2;1 ≥ A2;j for 1 ≤ j ≤ 4,

then (i), (ii) and (2.2.103) hold. The matrices A2, which satisfy (C1),
(C2) and (C3) can be listed as

(2.2.106)




1 1 1 0
1 0 a23 0
1 a32 0 0
0 0 0 0


 ,
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and

(2.2.107)




1 1 1 1
1 1 a23 a24

1 a32 1 a34

1 a34 a43 a44


 ,

where aij is either 0 or 1 in (2.2.106) and (2.2.107).

Notably, if (C2) and (C3) are replaced by

(C2)′ a4j = 1 if A2;j 6= 0 for 1 ≤ j ≤ 4,

(C3)′ Ã2;4 ≥ A2;j for 1 ≤ j ≤ 4,

then for any m ≥ 2,

(2.2.108) Cm;44 = Am−1

with

(2.2.109) A1 =

[
a41a14 a42a24

a43a34 a44a44

]
,

and property (ii) and equation (2.2.103) hold.

In Example 2.14, the diagonal parts A2;1 or A2;4 are dominant. In this
case, only Cm;11 or Cm;44 is required to apply Theorem 2.12. In contrast,
when A2;1 and A2;4 are no longer dominant as in the following examples, A2;2

and A2;3 can complement each other to establish that the entropy is positive.

Example 2.15. (A) Consider

(2.2.110) A2 =




0 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0


 ,

that (2.2.98) holds can be verified and

C2;11 =

[
0 1
1 0

]
, C2;22 =

[
1 0
1 0

]

C2;33 =

[
1 1
0 0

]
, C2;44 =

[
0 0
0 0

]

Therefore,

S2;14S2;41 =

[
1 1
1 1

]
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and

h(A2) ≥
1

4
log 2.

(B) Consider

(2.2.111) A2 =




0 1 1 0
1 0 1 1
1 0 0 1
1 1 1 0


 .

Then verifying

B2 =




0 1 1 0
1 0 1 1
1 0 1 1
0 1 1 0


 , B̃2 =




0 1 1 0
1 0 0 1
1 1 0 1
1 1 1 0


 , and Ã2 =




0 1 1 0
1 1 0 1
1 1 0 1
0 1 1 0


 .

is simple.
Furthermore,

C2;11 =

[
0 1
1 0

]
, C2;22 =

[
1 0
0 1

]

C2;33 =

[
1 0
0 1

]
, C2;44 =

[
0 1
1 0

]

and

U2;11 =

[
0 1
1 0

]
, U2;22 =

[
1 0
0 1

]
,

U2;33 =

[
1 0
1 1

]
, U2;44 =

[
0 1
1 0

]
.

Now, for any diagonal cycle, β1 · · ·βKβ1, ρ(S2;β1β2 · · ·S2;βKβ1) = 1, h(A2) > 0
cannot be established.
However,

W2;11W2;14W2;41 = U2;11U2;22U2;33 =

[
1 1
1 0

]

which implies

h(A2) ≥
1

6
log g,

where

(2.2.112) g =
1

2
(1 +

√
5)
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is the golden mean, which is a root of λ2 − λ − 1 = 0.
This example demonstrates the asymmetry of A2 and B2 in applying

Theorem 2.12, to verify the entropy is positive. Both Cm and Um are typically
checked for completeness.

Example 2.16. Consider

(2.2.113) A2 =




1 1 1 1
0 0 0 1
0 0 0 1
1 0 0 0


 .

Then it is easy to check that

W2;11W2;14W2;41 =

[
2 0
0 0

]
, S3;44 =

[
G 0
0 0

]
,

and

S4;44 =




G 0 0 0
0 e1 0 0
0 0 0 0
0 0 0 0


 ,

where

(2.2.114) G =

[
1 1
1 0

]
and e1 =

[
1 0
0 0

]
.

Therefore,

h(A2) ≥ max{1

6
log 2,

1

3
log g,

1

4
log g} =

1

3
log g.

Example 2.17. Consider

(2.2.115) A2 =




0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0


 .

Then

B2 =




0 1 1 0
1 1 0 0
1 0 1 0
0 0 0 0


 = Ã2 and B̃2 = A2.
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Therefore

C2,11 =

[
0 1
1 1

]
≡ G′.

Furthermore,

C4;11 = G′ ⊗ e1 ⊗ G′

and

C2m;11 = G′ ⊗ (⊗(e1 ⊗ G′)m−1)

can be proved, and which implies

(2.2.116)
1

2m
log ρ(C2m;11) =

1

2
log g.

for all m ≥ 1. Hence, h(A2) ≥ 1
2
log g. Moreover, in Remark 2.27 (ii), it can

be shown that h(A2) = 1
2
log g

§ 2.3 Trace operators

2.3.1 Trace operator Tm

The preceding section introduces connecting operators Cm, which can be used
to find lower bounds of spatial entropy. This section studies the diagonal
part of Cm, which can be used to investigate the trace of Am

n . When A2 is
symmetric, T2m gives the upper bound of spatial entropy.

The trace operator is defined first.

Definition 2.18. For m ≥ 2, the m-th order trace operator Tm of A2 is
defined by

(2.3.1) Tm =

[
Cm;11 Cm;22

Cm;33 Cm;44

]
=

[
Sm;11 Sm;14

Sm;41 Sm;44

]
,

where Cm;ij is as given in (2.1.23) or (3.2.45).
Similarly, the m-th order trace operator T′

m of B2 is defined by

(2.3.2) T′
m =

[
Um;11 Um;22

Um;33 Um;44

]
=

[
Wm;11 Wm;14

Wm;41 Wm;44

]

where Um;ij is as given in (3.2.47).

The relationships between the trace operator Tm, T
′

m and Am, Bm are
given as follows.
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Theorem 2.19. For any m ≥ 2,
(2.3.3)

Tm = (Bm)2m×2m◦




E2m−2×2m−2 ⊗
[

a11 a21

a31 a41

]
E2m−2×2m−2 ⊗

[
a12 a22

a32 a42

]

E2m−2×2m−2 ⊗
[

a13 a23

a33 a43

]
E2m−2×2m−2 ⊗

[
a14 a24

a34 a44

]




and
(2.3.4)

T′
m = (Am)2m×2m◦




E2m−2×2m−2 ⊗
[

b11 b21

b31 b41

]
E2m−2×2m−2 ⊗

[
b12 b22

b32 b42

]

E2m−2×2m−2 ⊗
[

b13 b23

b33 b43

]
E2m−2×2m−2 ⊗

[
b14 b24

b34 b44

]




.

In particular,

(2.3.5) Tm ≤ Bm and T′
m ≤ Am.

Proof. By (3.3.1) and (3.2.45),

Tm = (Bm)2m×2m◦




E2m−2×2m−2 ⊗
[

a11 a21

a31 a41

]
E2m−2×2m−2 ⊗

[
a12 a22

a32 a42

]

E2m−2×2m−2 ⊗
[

a13 a23

a33 a43

]
E2m−2×2m−2 ⊗

[
a14 a24

a34 a44

]




.

A similar result also holds for T′
m. Hence, (3.3.25) follows immediately.

The proof is complete.

Notably, the trace operator Tm (or T′
m) preserves all periodic words

ai1i2ai2i3 · · ·aimim+1 (bi1i2bi2i3 · · · bimim+1) with im+1 = i1 of length m system-
atically as Bm (or Am).

The traces of the elementary patterns are defined accordingly.

Definition 2.20. For m, n ≥ 2 and 1 ≤ α ≤ 4, define

(2.3.6) t(k)
m,n;α = tr(A(k)

m,n;α),

(2.3.7) tr(Xm,n;α) = (t(k)
m,n;α)1≤k≤2m−1 ,

and

(2.3.8) tm,n = (tr(Xm,n;1), tr(Xm,n;4))
t,

which are 2m−1 and 2m vectors, respectively.
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Note that

(2.3.9)
tr(Am

n ) = tr(
∑2m−1

k=1 A
(k)
m,n;1 +

∑2m−1

k=1 A
(k)
m,n;4)

= |tr(Xm,n;1)| + |tr(Xm,n;4)|
= |tm,n|.

First prove that Tm can reduce the traces of higher-order to lower-order.

Proposition 2.21. For m ≥ 2 and n ≥ 2,

(2.3.10) tm,n+1 = Tmtm,n

Proof. By Theorem 2.5, it is easy to see



tr(Xm,n+1;1)

tr(Xm,n+1;4)


 =




Cm;11tr(Xm,n;1) + Cm;22tr(Xm,n;4)

Cm;33tr(Xm,n;1) + Cm;44tr(Xm,n;4)


 .

Then, (3.3.16) follows immediately.
The proof is complete.

Repeatedly applying Proposition 2.21 yields the following result.

Theorem 2.22. For m ≥ 2 and n ≥ 1,

(2.3.11) tr(Am
n+2) = |Tn

mtm,2|

(2.3.12) ≡
∑

βk∈{1,4}
|Sm;β1β2Sm;β2β3 · · ·Sm;βnβn+1tr(Xm,2;βn+1)|.

Proof.

tr(Am
n )

=
2m−1∑

k=1

tr(A
(k)
m,n;1;1) +

2m−1∑

k=1

tr(A
(k)
m,n;1;4) +

2m−1∑

k=1

tr(A
(k)
m,n;4;1) +

2m−1∑

k=1

tr(A
(k)
m,n;4;4)

= |tr(Xm,n;1;1)| + |tr(Xm,n;1;4)| + |tr(Xm,n;4;1)| + |tr(Xm,n;4;4)|
= |tr(Sm;11Xm,n−1;1)| + |tr(Sm;14Xm,n−1;4)| + |tr(Sm;41Xm,n−1;1)| + |tr(Sm;44Xm,n−1;4)|
= |Tmtm,n−1|,

here Theorem 2.4 is used.
Reduction on n, yields

tr(Am
n ) = |Tn−2

m tm,2|.

Finally, (3.3.18) follows from (3.3.1) and (3.3.11).
The proof is complete.
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The following lemma is needed to show (2.1.33).

Lemma 2.23. Let Vm be a nonnegative eigenvector of Tm with respect to
the maximum eigenvalue ρ(Tm). If ρ(Tm) > 0, then

〈Vm, tm,2〉 > 0,

where 〈 , 〉 denotes the standard inner product of C2m

.

Proof. Let Vm = (u1, · · · , uM , u′
1, · · · , u′

M) be a nonnegative eigenvector of
Tm, where M = 2m−1. Since ρ(Tm) > 0, by Lemma 2.11, if uk > 0 (or

u′
l > 0) then tr(A

(k)
m,2;1) > 0 (or tr(A

(l)
m,2;4) > 0). The result follows by

(3.3.11).
The proof is complete.

Now, (2.1.33) can be proved.

Theorem 2.24. For any m ≥ 2,

(2.3.13) lim sup
n→∞

1

n
log tr(Am

n ) = log ρ(Tm),

and

(2.3.14) h(A2) = lim sup
m→∞

1

m
log ρ(Tm).

Furthermore, if An are primitive for all n ≥ 2, then limsup in (3.3.19) and
(3.3.20) can be replaced by lim, i.e.,

(2.3.15) lim
n→∞

1

n
log tr(Am

n ) = log ρ(Tm)

and

(2.3.16) h(A2) = lim
m→∞

1

m
log ρ(Tm).

Proof. By Perron-Frobenius theorem, for all n ≥ 2, we have

(2.3.17) lim sup
m→∞

1

m
log tr(Am

n ) = log ρ(An).

Therefore, by (2.3.17) and Theorem 2.22, we have

h(A2) = lim
n→∞

1

n
log ρ(An) = lim sup

n,m→∞

1

mn
log tr(Am

n ) = lim sup
n,m→∞

1

mn
log |Tn

mtm,2|.
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By Lemma 2.23 and by argument used to prove Theorem 2.12,

(2.3.18) lim sup
n→∞

1

n
log |Tn

mtm,2| = log ρ(Tm)

can be shown, and (3.3.19) and (3.3.20) follow immediately.
When An are primitive for all n ≥ 2, (2.3.15) and (2.3.16) follow.
The proof is complete.

Now, the symmetry of A2 is established to be able to be inherited by the
higher order matrices.

Proposition 2.25. If A2 is symmetric, then An is also symmetric for each
n ≥ 3.

Proof. The proposition is proven by induction on n.

Let M =

[
M1 M2

M3 M4

]
be a square matrix and Mi, 1 ≤ i ≤ 4, all be

square matrices. Then, the transpose matrix Mt of M is

Mt =

[
M1

t M3
t

M2
t M4

t

]
.

Therefore, M is symmetric if and only if

M1
t = M1, M3

t = M2 and M4
t = M4.

In particular, A2 is symmetric if and only if

(2.3.19) At
2;1 = A2;1, At

2;3 = A2;2 and At
2;4 = A2;4.

Now, An is assumed to be symmetric, such that

(2.3.20) At
n;1 = An;1, At

n;3 = An;2 and At
n;4 = An;4.

Since

An+1;α = [A2;α]2×2 ◦
[

An;1 An;2

An;3 An;4

]
,

(3.3.21) and (3.3.21) imply

At
n+1;1 = An+1;1, At

n+1;3 = An+1;2 and At
n+1;4 = An+1;4.

Hence, An+1 is symmetric.
The proof is complete.
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Now, upper estimates of spatial entropy h(A2) are obtained when A2 is
symmetric.

Theorem 2.26. If A2 is symmetric then for any m ≥ 1,

(2.3.21) h(A2) ≤
1

2m
log ρ(T2m).

Proof. By Proposition 2.25, A2m
n is symmetric for any m ≥ 1. The symmetry

of A2m
n implies that all eigenvalues of A2m

n are non-negative. Hence,

(2.3.22) ρ(An)2m = ρ(A2m
n ) ≤ tr(A2m

n ).

On the other hand, the subadditivity of (2.2.58) implies

(2.3.23) h(A2) ≤
1

(2mk + 1)n
log |A2mk

n |.

Therefore, (3.3.24), (3.3.22) and (3.3.17) imply

h(A2) ≤ lim
n,k→∞

1

(2mk + 1)n
log |A2mk

n | = lim
n→∞

1

2mn
log ρ(A2m

n )

≤ lim
n→∞

1

2mn
log tr(A2m

n ) = lim
n→∞

1

2mn
log |Tn−2

2m t2m,2|

≤ 1

2m
log ρ(T2m).

The proof is complete.

Notably, Tm (or T′
m) yields a better estimate than Bn (or An) whenever

(2.3.24) h(A2) ≤
1

m
log ρ(Tm)

holds.

Remark 2.27. (i) The problem in which An are primitive for all n ≥ 2
has already been investigated [6]. In [6], various sufficient conditions
have been found to ensure that An are primitive for all n ≥ 2. Notably,
limit in (2.3.15) and (2.3.16), instead of limsup in (3.3.19) and (3.3.20),
causes An to have a unique maximum eigenvalue with a maximum
modulus. Therefore, An may be imprimitive but (2.3.15) and (2.3.16)
still hold. For example, Golden-Mean and simplified Golden-Mean in
Example 2.14 are imprimitive but (2.3.15) and (2.3.16) still hold. The
remaining matrices of these An are primitive if their rows and columns
with zero entries are removed.
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(ii) In general, limsup cannot be replaced by limit. For example, consider

(2.3.25) A2 =




0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0


 .

Further computation shows that

T2m+1 = 0

and

T2m =

[
(⊗(G

′ ⊗ e1)
m−1) ⊗ G

′

e1 ⊗ (⊗(G
′ ⊗ e1)

m−1)
e1 ⊗ (⊗(G

′ ⊗ e1)
m−1) e1 ⊗ (⊗(G

′ ⊗ e1)
m−1)

]

for all m ≥ 1, where G
′

=

[
0 1
1 1

]
and e1 =

[
1 0
0 0

]
.

Therefore, ρ(T2m+1) = 0. Furthermore, it can be shown that

(2.3.26) ρ(T2m) ≤ gm + gm−1.

Combining (2.2.116) and (2.3.26), h(A2) = 1
2
log g. Hence (3.3.20)

holds only for limsup. Unlike (2.2.62) this example demonstrates that
(3.3.23) does not hold for any n = 2m + 1. This phenomenon is a
disadvantage in determining the upper estimate of entropy associated
with replacing An with Tn.

Example 2.28. Consider

A2 =




1 1 1 1
0 0 0 1
0 0 0 1
1 0 0 0




which was studied as in Example 3.2.9. Now, A2 is asymmetric. Furthermore,

tr(A2
n) = 3

can be obtained for all n ≥ 2. Hence, (3.3.24) and then (3.3.26) fail when
m = 1. However,

C4;44 =




G 0 0 0
0 e1 0 0
0 0 0 0
0 0 0 0


 ,

where G =

[
1 1
1 0

]
, e1 =

[
1 0
0 0

]
and 0 =

[
0 0
0 0

]
. Hence tr(A4

n) grows

at least exponentially with exponent ρ(G) = g, the golden-mean.
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Whether (3.3.26) holds for some m ≥ 2 is of interest.

Example 2.29. Consider the Golden-Mean

A2 =




1 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0


 ,

which was studied as in Example 2.14. A2 is symmetric, so the numerical
results can be obtained as follows.

m ρ(Am−1)
1
m ρ(Tm)

1
m ρ(Am)

1
m

2 1.3415037626 1.5537739740 1.5537739740
3 1.3804413572 1.4892228485 1.5370592754
4 1.4041128626 1.5069022259 1.5284545258
5 1.4201397131 1.5017251916 1.5233415461
6 1.4316975290 1.5035148094 1.5199401525
7 1.4404277508 1.5028716910 1.5175154443
8 1.4472546963 1.5031163748 1.5156994341
9 1.4527395436 1.5030208210 1.5142884861
10 1.4572426033 1.5030591603 1.5131606734
11 1.4610058138 1.5030435026 1.5122385423
12 1.4641976583 1.5030500001 1.5114705290
13 1.4669390746 1.5030472703 1.5108209763
14 1.4693191202 1.5030484295 1.5102644390
15 1.4714048275 1.5030479329 1.5097822725
16 1.4732476160 1.5030481473 1.5093605030

Notably, both ρ(Am)
1
m and ρ(T2m)

1
2m are monotonically decreasing in m. In

contrast, ρ(Am−1)
1
m and ρ(T2m+1)

1
2m+1 are monotonically increasing in m,

that ρ(T2m)
1

2m gives better upper bound than ρ(Am)
1
m . That ρ(T2m+1)

1
2m+1

are lower bounds is conjectured. If they were, then ρ(Tm)
1
m would yield a

very sharp estimates.

§ 2.4 More symbols on larger lattice

As mentioned in the introduction, many physical and engineering problems
involve many (more than two) symbols and larger lattices. Therefore, the
results found in the previous sections must be extended to any finite number
of symbols p ≥ 2 on any finite square lattice Z2l×2l, l≥1. The results are only
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outlined here, and the details are left to the readers. Proofs of theorems are
omitted for brevity.

For fixed p ≥ 2 and l ≥ 1, denote by

(2.4.1) q = pl2 .

The horizontal and vertical transition matrices are given by

(2.4.2) A2 =




a1,1 a1,2 · · · a1,q2

a2,1 a2,2 · · · a2,q2

...
...

. . .
...

aq2,1 aq2,2 · · · aq2,q2




and

(2.4.3) B2 =




b1,1 b1,2 · · · b1,q2

b2,1 b2,2 · · · b2,q2

...
...

. . .
...

bq2,1 bq2,2 · · · bq2,q2


 ,

respectively.
Now, A2 and B2 are related to each other by

(2.4.4) A2 =




A2;1 A2;2 · · · A2;q

A2;q+1 A2;q+2 · · · A2;2q

...
...

. . .
...

A2;q(q−1)+1 · · · · · · A2;q2




where

(2.4.5) A2;α =




bα,1 bα,2 · · · bα,q

bα,q+1 bα,q+2 · · · bα,2q

...
...

. . .
...

bα,q(q−1)+1 bα,q(q−1)+2 · · · bα,q2


 ,

and

(2.4.6) B2 =




B2;1 B2;2 · · · B2;q

B2;q+1 B2;q+2 · · · B2;2q

...
...

. . .
...

B2;q(q−1)+1 · · · · · · B2;q2



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where

(2.4.7) B2;α =




aα,1 aα,2 · · · aα,q

aα,q+1 aα,q+2 · · · aα,2q

...
...

. . .
...

aα,q(q−1)+1 aα,q(q−1)+2 · · · aα,q2


 ,

respectively, where 1 ≤ α ≤ q2. The column matrices Ã2 and B̃2, A2 and
B2 are defined as in (3.2.2) and (3.2.3). For higher order transition matrices
An, n ≥ 3, are defined as

(2.4.8) An =




An;1 An;2 · · · An;q

An;q+1 An;q+2 · · · An;2q

...
...

. . .
...

An;q(q−1)+1 An;(q−1)q+2 · · · An;q2




where
(2.4.9)

An;α =




bα,1An−1;1 bα,2An−1;2 · · · bα,qAn−1;q

bα,q+1An−1;q+1 bα,q+2An−1;q+2 · · · bα,2qAn−1;2q

...
...

. . .
...

bα,q(q−1)+1An−1;q(q−1)+1 bα,q(q−1)+2An−1;q(q−1)+2 · · · bα,q2An;q2


 .

Rewriting the indices of An;α as follows, facilitates matrix multiplication.

(2.4.10) An =




An;11 An;12 · · · An;1q

An;21 An;22 · · · An;2q

...
...

. . .
...

An;q1 An;q2 · · · An;qq


 .

Clearly, An;α = An;j1j2, where

(2.4.11) α = α(j1, j2) = q(j1 − 1) + j2.

For m ≥ 2, the elementary pattern in the entries of Am
n is given by

An;j1j2An;j2j3 · · ·An;jmjm+1 ,

where js ∈ {1, 2, · · · , q}.
The lexicographic order for multiple indices

Jm+1 = (j1j2 · · · jmjm+1)
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is introduced by

(2.4.12) χ(Jm+1) = 1 +

m∑

l=2

qm−l(jl − 1).

Specify

A(k)
m,n;α = An;j1j2An;j2j3 · · ·An;jmjm+1,

where α = α(j1, jm+1) satisfies (3.4.6) and k = χ(Jm+1) is as given in (3.4.7).
Based on this arrangement, Am

n can be written as

Am
n =




Am,n;1 Am,n;2 · · · Am,n;q

Am,n;q+1 Am,n;q+2 · · · Am,n;2q

...
...

. . .
...

Am,n;q(q−1)+1 Am,n;q(q−1)+2 · · · Am,n;q2


 ,

where

Am,n;α =

qm−1∑

k=1

A(k)
m,n;α.

Moreover, Xm,n;α = (A
(k)
m,n;α)t, where 1 ≤ k ≤ qm−1 and Xm,n;α is a qm−1-

vector that comprise all elementary patterns in Am,n;α. The ordering matrix
Xm,n of Am

n is now defined as

Xm,n =




Xm,n;1 Xm,n;2 · · · Xm,n;q

Xm,n;q+1 Xm,n;q+2 · · · Xm,n;2q

...
...

. . .
...

Xm,n;q(q−1)+1 Xm,n;q(q−1)+2 · · · Xm,n;q2


 ,

and Xm,n+1;β can be reduced to X2,n;β by multiplication with connecting
matrices Cm;α,β. The connecting operator Cm is defined as follows.

Definition 2.30. For m ≥ 2, define

Cm =




Cm;1,1 Cm;1,2 · · · Cm;1,q2

Cm;2,1 Cm;2,2 · · · Cm;2,q2

...
...

. . .
...

Cm;q2,1 Cm;q2,2 · · · Cm;q2,q2



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(2.4.13)

=




Sm;1,1 · · · Sm;1,q

...
. . .

...
Sm;1,q(q−1)+1 · · · Sm;1,q2

· · ·
Sm;q,1 · · · Sm;q,q

...
. . .

...
Sm;q,q(q−1)+1 · · · Sm;q,q2

...
. . .

...
Sm;q(q−1)+1,1 · · · Sm;q(q−1)+1,q

...
. . .

...
Sm;q(q−1)+1,q(q−1)+1 · · · Sm;q(q−1)+1,q2

· · ·
Sm;q2,1 · · · Sm;q2,q

...
. . .

...
Sm;q2,q(q−1)+1 · · · Sm;q2,q2




where
(2.4.14)
Cm;α,β = ((B2;α)q×q ◦ (⊗̂Bm−2

2 )q×q)qm−1×qm−1 ◦ (Eqm−2×qm−2 ⊗ Ã2;β)qm−1×qm−1 .

Like Theorem 2.4, Cm+1;α,β can be obtained in terms of Cm;γ,β.

Theorem 2.31. For any m ≥ 2 and 1 ≤ α, β ≤ q2

Cm+1;α,β =




aα;1Cm;1,β aα;2Cm;2,β · · · aα;qCm;q,β

aα;q+1Cm;q+1,β aα;q+2Cm;q+2,β · · · aα;2qCm;2q,β

...
...

. . .
...

aα;q(q−1)+1Cm;q(q−1)+1,β aα;q(q−1)+2Cm;q(q−1)+2,β · · · aα;q2Cm;q2,β


 .

Denote by

A
(k)
m,n+1;α =




A
(k)
m,n+1;α;1 A

(k)
m,n+1;α;2 · · · A

(k)
m,n+1;α;q

A
(k)
m,n+1;α;q+1 A

(k)
m,n+1;α;q+2 · · · A

(k)
m,n+1;α;2q

...
...

. . .
...

A
(k)
m,n+1;α;q(q−1)+1 A

(k)
m,n+1;α;q(q−1)+2 · · · A

(k)

m,n+1;α;q2




and Xm,n+1;α;β = (A
(k)
m,n+1;α;β)t where A

(k)
m,n+1;α;β is a linear combination of

A
(l)
m,n;γ. Now, Theorem 2.5 can be generalized to the following theorem.

Theorem 2.32. For any m ≥ 2 and n ≥ 2, let Sm;α,β be as given in (3.4.8)
and (3.4.9). Then Xm,n+1;α;β = Sm;α,βXm,n;β.





Reference

[1] J.C. Ban, K.P. Chien and S.S. Lin, Spatial disorder of CNN-with asym-
metric output funtion, International J. of Bifurcation and Chaos 11,
(2001) 2085-2095.

[2] J.C. Ban, C.H. Hsu AND S.S.Lin, Spatial disorder of cellular neural
network-with biased term, International J. of Bifurcation and Chaos 12,
(2002) 525-534.

[3] J.C. Ban, S.S. Lin and C.W. Shih, Exact number of mosaic patterns in
one-dimensional cellular neural networks, International J. of Bifurcation
and Chaos 11, (2001) 1645-1653.

[4] J.C. Ban and S.S. Lin, Patterns generation and transition matrices in
multi-dimensional lattice models, Discrete Contin. Dyn. Syst. 13, (2005),
no. 3, 637-658.

[5] J.C. Ban, S.S. Lin and Y.H. Lin, Patterns generation and spatial entropy
in three-dimensional lattice models, preprint (2005).

[6] J.C. Ban, S.S. Lin and Y.H. Lin, Primitivity of subshifts of finite type
in two-dimensional lattice models, preprint (2005).

[7] P.W. Bates and A. Chmaj, A discrete convolution model for phase tran-
sitions, Arch. Rat. Mech. Anal 150, (1999) 281-305.

[8] P.W. Bates, K. Lu and B. Wang, Attractors for lattice dynamical sys-
tems, International J. of Bifurcation and Chaos 11, (2001) 143-153.

[9] J. Bell, Some threshold results for modes of myelinated nerves, Math.
Biosci. 54, (1981) 181-190.

[10] J. Bell and C. Cosner, Threshold behavior and propagation for nonlinear
differential-difference systems motivated by modeling myelinated axons,
Quart. Appl. Math. 42, (1984) 1-14.

77



78 REFERENCE

[11] R. J. Baxter, Eight-vertex model in lattice statistics., Phys. Rev. Lett.
26, (1971) 832-833.

[12] J.W. Cahn, Theory of crystal growth and interface motion in crystalline
materials, Acta Metallurgica 8, (1960) 554-562.

[13] S.N. Chow and J. Mallet-paret, Pattern formation and spatial chaos in
lattice dynamical systems II, IEEE Trans. Circuits Systems 42, (1995)
752-756.

[14] S.N. Chow, J. Mallet-paret and E. S. Van Vleck, Dynamics of lattice dif-
ferential equations, International J. of Bifurcation and Chaos 6, (1996)
1605-1621.

[15] S.N. Chow, J. Mallet-paret and E.S. Van Vleck, Pattern formation and
spatial chaos in spatially discrete evolution equations, Random Comput.
Dynam. 4, (1996) 109-178.

[16] L.O. Chua, CNN: A paradigm for complexity (World Scientific Series on
Nonlinear Science, Series A,31. World Scietific, Singapore, 1998)

[17] L.O. Chua, K.R. Crounse, M. Hasler and P. Thiran, Pattern formation
properties of autonomous cellular neural networks, IEEE Trans. Circuits
Systems 42, (1995) 757-774.

[18] L.O. Chua and T. Roska, The CNN paradigm, IEEE Trans. Circuits
Systems 40, (1993) 147-156.

[19] L.O. Chua and L. Yang, Cellular neural networks: Theory, IEEE Trans.
Circuits Systems 35, (1988) 1257-1272.

[20] L.O. Chua and L. Yang, Cellular neural networks: Applications, IEEE
Trans. Circuits Systems 35, (1988) 1273-1290.

[21] G.B. Ermentrout, Stable periodic solutions to discrete and continuum
arrays of weakly coupled nonlinear oscillators, SIAM J. Appl. Math. 52,
(1992) 1665-1687.

[22] G.B. Ermentrout and N. Kopell, Inhibition-produced patterning in
chains of coupled nonlinear oscillators, SIAM J. Appl. Math. 54, (1994)
478-507.

[23] G.B. Ermentrout, N. Kopell and T. L. Williams, On chains of oscillators
forced at one end, SIAM J. Appl. Math. 51, (1991) 1397-1417.



REFERENCE 79

[24] T. Eveneux and J.P. Laplante, Propagation failure in arrays of coupled
bistable chemical reactors, J. Phys. Chem. 96, (1992) 4931-4934.

[25] W.J. Firth, Optical memory and spatial chaos, Phys. Rev. Lett. 61,
(1988) 329-332.

[26] F.R. Gantmacher, The theory of matrices (2 vols. Chelsea, New York,
1959)

[27] R.A. Horn and C.R. Johnson, Matrix analysis (Cambridge University
Press, Cambridge, 1990)

[28] C.H. Hsu, J. Juang, S.S. Lin, and W.W. Lin, Cellular neural networks:
local patterns for general template, International J. of Bifurcation and
Chaos 10, (2000) 1645-1659.

[29] J. Juang and S.S. Lin, Cellular Neural Networks: Mosaic pattern and
spatial chaos, SIAM J. Appl. Math. 60, (2000) 891-915.

[30] J. Juang, S.S. Lin, W.W. Lin and S.F. Shieh, The spatial entropy of
two-dimensional subshifts of finite type, International J. of Bifurcation
and Chaos 10, (2000) 2845-2852.

[31] J.P. Keener, Propagation and its failure in coupled systems of discrete
excitable cells, SIAM J. Appl. Math. 47, (1987) 556-572.

[32] J.P. Keener, The effects of discrete gap junction coupling on propagation
in myocardium, J. Theor. Biol. 148, (1991) 49-82.

[33] A.L. Kimball, A. Varghese and R.L. Winslow, Simulating cardiac sinus
and atrial netwok dynamics on the connection machine, Phys. D 64,
(1993) 281-298.

[34] E.H. Lieb, Exact solution of the problem of the entropy of two-
dimensional ice, Phys. Rev. Lett. 18, (1967) 692-694.

[35] E.H. Lieb, Exact solution of the f model of an antiferroelectric, Phys.
Rev. Lett. 18, (1967) 1046-1048.

[36] E.H. Lieb, Exact Solution of the Two-Dimensional Slater KDP Model
of a Ferroelectric, Phys. Rev. Lett. 19, (1967) 108-110.

[37] E.H. Lieb, The Residual Entropy of Square Ice, Phys. Rev. 162, (1967)
162-172.



80 REFERENCE

[38] E.H. Lieb, Ice, ferro- and antiferroelectrics, in methods and problems in
theoretical physics, in honour of R.E. Peierls, proceedings of the 1967
Birmingham conference, (North-Holland, 1970) 21-28.

[39] S.S. Lin and T.S. Yang, Spatial entropy of one-dimensional celluar neu-
ral network, International J. of Bifurcation and Chaos 10, (2000) 2129-
2140.

[40] S.S. Lin and T.S. Yang, On the spatial entropy and patterns of two-
dimensional cellular neural networks, International J. of Bifurcation and
Chaos 12, (2002) 115-128.

[41] D. Lind and B. Marcus, An introduction to symbolic dynamics and cod-
ing, Cambridge University Press, Cambridge, (1995).

[42] A. Lindenmayer and P. Prusinkiewicz, The algorithmic beauty of plants,
Springer-Verlag, New York, (1990).

[43] N.G. Markley and M.E. Paul, Maximal measures and entropy for Zν sub-
shifts of finite type. Classical mechanics and dynamical systems, Med-
ford, Mass., (1979) 135-157, Lecture Notes in Pure and Appl. Math.,
70, Dekker, New York, (1981).

[44] N.G. Markley and M.E. Paul, Matrix subshifts for Zν symbolic dynam-
ics, Proc. London Math. Soc., (3) 43, (1981) 251-272.

[45] L. Onsager, Crystal statistics. I. A two-dimensional model with an order-
disorder transition., Phys. Rev. 65, (1944) 117-149.

[46] C.N. Yang and C.P. Yang, One-dimensional chain of anisotropic spin-
spin interactions. I. Proof of Bethe’s hypothesis for ground state in a
finite system., Phys. Rev. 150, (1966a) 321-327.

[47] C.N. Yang and C.P. Yang, One-dimensional chain of anisotropic spin-
spin interactions. II. Properties of the ground-state energy per lattice
site for an infinite system., Phys. Rev. 150, (1966b) 327-339.

[48] C.N. Yang and C.P. Yang, One-dimensional chain of anisotropic spin-
spin interactions. III. Applications., Phys. Rev. 151, (1966c) 258-264.



Chapter 3

Patterns Generation and Spatial Entropy in

Three-dimensional Lattice Models (I):

Ordering Matrices and Connecting Operators

§ 3.1 Introduction

Lattice dynamical system(LDS) arise naturally in a wide applications of sci-
entific models. See, for example, phase transitions [13], [14], [36], [37], [38],
[39], [40], [47], [48], [49], [50], biology [10], [11], [23], [24], [25], [33], [34], [35],
chemical reaction [8], [9], [26], image processing and pattern recognition [18],
[19], [20], [21], [22], [27]. In cellular neural networks, much attention focus
on the complexity of the set of all global patterns, in particular in its spatial
entropy [1], [2], [3], [4], [5], [6], [7], [15], [16], [17], [30], [31], [32], [41], [42],
[43], [44], [45], [46].

In a one-dimensional case, spatial entropy h can be exactly computed
by a associated transition matrix T, i.e., h = log λ(T), where λ(T) is the
maximum eigenvalue of T.

For two-dimensional situations, [4] develops a systematical approach for
discovering higher order transition matrix Tn and the spatial entropy h can
be obtained by computing the maximum eigenvalues of a sequence of these
transition matrices Tn. For a class of admissible local patterns, i.e., for a
class of T2, the limiting equation to ρ∗ = exp(h(T2)) can be exactly solved
through the recursive formulae of ρ(Tn). However, Tn is a 2n × 2n matrix,
it is usually quite difficult to compute ρ(Tn) when n is larger. [5] derives
the connecting operator to resolve these difficulties. Indeed, [5] yields lower-
bound estimates of entropy by introducing connecting operators Cm, and
upper-bound estimates of entropy by introducing trace operators Tm.

Our interest in this study is to develop a general approach for investigating
three-dimensional pattern generation problems, i.e., extends works [4] and
[5] to three-dimensional case. And this study focus on ordering matrices of
patterns and connecting operator in three-dimensional case. The topic of
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trace operator will be appeared in [7].
More precisely, let S be a finite set of p ≥ 2 colors where Z3 denotes the

integer lattice of R3. Denote U : Z3 → S. And the set of all local patterns
on Zm1×m2×m3 is denoted by

Σm1×m2×m3 ≡ {U |Zm1×m2×m3
: U ∈ Σ3

p}

where Zm1×m2×m3 = {(α1, α2, α3) : 1 ≤ αi ≤ mi, 1 ≤ i ≤ 3} be a m1 ×
m2 × m3 finite rectangular lattice. For simplicity, two colors on 2 × 2 × 2
lattice Z2×2×2 are considered here. Given a basic set B ⊂ Σ2×2×2, the spatial
entropy can be defined as

h(B) = lim
m1,m2,m3→∞

log Γm1×m2×m3(B)

m1m2m3
,(3.1.1)

where Γm1×m2×m3(B) is the number of distinct patterns in Σm1×m2×m3(B) and
Σm1×m2×m3(B) is the set of all global patterns on Zm1×m2×m3(B) which can be
generated by B, as in [17]. Motivated by [4], there are six different orderings
such as in (3.2.1) and according to the different ordering [ω] the ordering
matrix Aω;2×2×2 for Σ2×2×2 can be introduced. Without loss of generality, we
take the example Ax;2×2×2 as in (3.2.9) and the other cases are similar. Use
[x]-ordering on Z1×m2×2 (3.2.26), the recursive formula of ordering matrix
Ax;2×m2×2 for Σ2×m2×2 can be obtained. Then, convert [x]-ordering into [x̂]-
ordering on Z1×m2×2 such as (3.2.27) enable introducing ordering matrix
Ax̂;2×m2×2 for Σ2×m2×2. The recursive formulae of ordering matrix Ax̂;2×m2×m3

for Σ2×m2×m3 also be found through the [x̂]-ordering on Z1×m2×m3 such as in
(3.2.28). The recursive formula for Ax̂;2×m2×m3 imply the recursive formula
for the associated transition matrix Tx̂;2×m2×m3 of Σ2×m2×m3(B) such as the
Theorem 3.8 and Theorem 3.13, which enabling us to compute the maximum
eigenvalue of Tx̂;2×m2×m3 to get the spatial entropy such as in the Theorem
3.13. However, we hope to produce some estimations in spatial entropy h(B).
Then, for fixed m1, m2 ≤ 2, the m1-limit in (3.1.1) is studied, i.e.,

lim
m3→∞

1

m3
log |Am1

x̂;2×m2×m3
|(3.1.2)

is considered. So the next task is to investigate of (3.1.2). As in (3.4.6) and

(3.4.7), A
(k)
x̂;m1,m2,m3;α is called an elementary pattern of order (m1, m2, m3)

and is a fundamental element in constructing A
(k)
x̂;m1,m2,m3;α

in (3.4.7). We
define Xx̂;m1,m2,m3 as in (3.4.8) and (3.4.9) which is represented to reward sys-
tematically these elementary patterns. We introduce Cx̂;m3;m1m2 as 3.17, and

use it to derive a recursive formulae for A
(k)
x̂;m1,m2,(m3+1);α1;α2

and A
(ℓ)
x̂;m1,m2,m3;α2

as in 3.20.
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The recursive formula (3.4.32) immediately yields a lower bound on en-
tropy such as in 3.4.2. Equation (3.4.55) implies h(Ax;2×2×2) > 0, if a diagonal
periodic cycle applied, with a maximum eigenvalue in (3.4.55) larger than 1.
This method powerfully yields the positivity of spatial entropy, which is hard
in examining the the complexity of patterns generation problems.

The rest of this paper is organized as follows. Section 3.2, we derive a
recursive formula to obtain the ordering matrix Ax;2×m2×2 for Σ2×m2×2 from
Ax;2×2×2. Convert the ordering [x] into [x̂]. Then, construct the similar recur-
sive formula for ordering matrix Ax̂;2×m2×m3 from Ax̂;2×m2×2. Section 3.3 we
derives the recursive formula for the associated higher order transition ma-
trices Tx̂;2×m2×m3 from Tx;2×2×2. Section 3.4 derives the connecting operator
Cm which can recursively reduce higher elementary patterns to patterns of
lower order. Then, the lower-bound of spatial entropy can be found by com-
puting the maximum eigenvalues of the diagonal periodic cycles of sequence
Sx̂;m3;m1m .

§ 3.2 Three Dimensional Patterns Generation Problems

This section describes three dimensional patterns generation. Let S be a set
of p colors, Zm1×m2×m3 be a fixed finite rectangular sublattice of Z3, where
Z3 denotes the integer lattice on R3 and (m1, m2, m3) a 3-tuple of positive
integers. Functions U : Z3 → S and Um1×m2×m3 : Zm1×m2×m3 → S are called
global patterns and local patterns on Zm1×m2×m3 respectively. The set of all
patterns U is denoted by ΣP ≡ SZ

3
, i.e., Σp is the set of all patterns with

p different colors in 3-dimensional lattice. For clarity, we begin by studying
two symbols, i.e., S = {0, 1}. There are three coordinates, let x-, y- and
z-coordinate represent the 1st-, 2ed- and 3rd-coordinate respectively. There
are six orderings [O] ordering could be represented as follows:

[x] : [1] ≻ [2] ≻ [3],
[y] : [2] ≻ [1] ≻ [3],
[z] : [3] ≻ [1] ≻ [2],
[x̂] : [1] ≻ [3] ≻ [2],
[ŷ] : [2] ≻ [3] ≻ [1],
[ẑ] : [3] ≻ [2] ≻ [1].

(3.2.1)

On a fixed finite lattice Zm1×m2×m3 , we firstly give an ordering [O] = Om1×m2×m3

on Zm1×m2×m3 which belongs to any one of above orderings on Zm1×m2×m3

by [O] : [i] ≻ [j] ≻ [k]

O(α1, α2, α3) = mjmk(αi − 1) + mk(αj − 1) + αk.(3.2.2)
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The ordering [O] on Zm1×m2×m3 can now passed to Σm1×m2×m3 . Indeed for
each U = (uα1,α2,α3) ∈ Σm1×m2×m3 , define

O(U) = Om1×m2×m3(U)

= 1 +
mi∑

αi=1

mj∑
αj=1

mk∑
αk=1

uα1α2α3O
αi,αj ,αk
mi,mj ,mk

,
(3.2.3)

where

Oαi,αj ,αk
mi,mj ,mk

= 2mkmj(mi−αi)+mk(mj−αj)+(mk−αk).(3.2.4)

U is referred to herein as the O(U)-th element in Σm1×m2×m3 by ordering [O].
By identifying the pictorial patterns by numbers O(U), it becomes highly ef-
fective in proving theorems since computations can now be performed on
O(U). For example, the orderings on Z2×2×2 could be represented as follows:

[x]-ordering [x̂]-ordering

1

2

3

4 5

6

7

8 1

3

2

4 5

7

6

8

[y]-ordering [ŷ]-ordering

1 2
3 4

5 6
7 8

1 3
2 4

5 7
6 8

[z]-ordering [ẑ]-ordering

3.2.1 Ordering Matrices

Fixed 1 ≤ α1 ≤ m1, for 1 × m2 × m3 pattern U = (uα1α2α3), 1 ≤ α2 ≤ m2

and 1 ≤ α3 ≤ m3 in Σ1×m2×m3 , under the ordering [x] pattern U is assigned
the number

iα1 = x(U) = 1 +

m2∑

α2=1

m3∑

α3=1

uα1,α2,α3x
1,α2,α3

1,m2,m3
,(3.2.5)
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where α1 means the α1-th layer in x-coordinate. As denoted by the 1×m2 ×
m3 pattern

ax;1×m2×m3;iα1
=

uα11m3 uα12m3 · · · uα1m2m3

...
...

. . .
...

uα112 uα122 · · · uα1m22

uα111 uα121 · · · uα1m21

.(3.2.6)

In particular, when m2 = 2 and m3 = 2 as denoted by ax;1×2×2;iα1
, where

iα1 = 1 + 23uα111 + 22uα112 + 2uα121 + uα122(3.2.7)

and

ax;1×2×2;iα1
=

uα112 uα122

uα111 uα121
.

A 2 × 2 × 2 pattern U = (uα1α2α3) can now be obtained by [x]-direct sum of
two 1 × 2 × 2 patterns using [x]-ordering, i.e.,

ax;2×2×2;i1i2 = ax;1×2×2;i1 ⊕ ax;1×2×2;i2

=

,(3.2.8)

where iα1 as in (3.2.7) and α1 ∈ {1, 2}. Therefore, the complete set of 28

patterns in Σ2×2×2 can be listed by a 16× 16 matrix Ax;2×2×2 = [ax;2×2×2;i1i2 ]
as its entries in

where .

(3.2.9)

It is easy to verify that

x(ax;2×2×2;i1i2) = 24(i1 − 1) + i2,(3.2.10)
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i.e., we are counting local patterns in Σ2×2×2 by going through each row
successively in (3.2.9). Correspondingly, Ax;2×2×2 can be referred to as an
ordering matrix for Σ2×2×2. A 2×2×2 pattern can also be viewed as [x]-direct
sum of two 1 × 2 × 2 patterns using [x̂]-ordering, i.e.,

ax̂;2×2×2;î1 î2
= ax̂;î1

⊕ ax̂;î2
(3.2.11)

where

ˆiα1 = 1 + 23uα111 + 22uα121 + 2uα112 + uα122, α1 ∈ {1, 2},(3.2.12)

such as in (3.2.5). And the ordering matrix Ax̂;2×2×2 can be represented as

where .

(3.2.13)

It could be verified that

x̂(ax̂;î1î2
) = 24(î1 − 1) + î2.(3.2.14)

Similarly, a 2 × 2 × 2 pattern can also be viewed as a [y]-direct ([ŷ]-direct)
and [z]-direct ([ẑ]-direct) sum of 2 × 1 × 2 and 2 × 2 × 1 pattern, i.e.,

ay;j1j2 = ay;j1 ⊕ ay;j2 ,

aŷ;ĵ1ĵ2
= aŷ;ĵ1

⊕ aŷ;ĵ2
,

az;k1k2 = az;k1 ⊕ az;k2,

aẑ;k̂1k̂2
= aẑ;k̂1

⊕ aẑ;k̂2
,

where

jα2 = 1 + 23u1α21 + 22u1α22 + 2u2α21 + u2α22, α2 ∈ {1, 2},(3.2.15)
ˆjα2 = 1 + 23u1α21 + 22u2α21 + 2u1α22 + u2α22, α2 ∈ {1, 2},(3.2.16)

kα3 = 1 + 23u11α3 + 22u12α3 + 2u21α3 + u22α3 , α3 ∈ {1, 2},(3.2.17)

k̂α3 = 1 + 23u11α3 + 22u21α3 + 2u12α3 + u22α3 , α3 ∈ {1, 2}.(3.2.18)
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A 16 × 16 matrix Ay;2×2×2 = [ay;2×2×2;j1j2] or Az;2×2×2 = [az;2×2×2;k1k2] can
also be obtained for Σ2×2×2, i.e., we have Ay;2×2×2 =

where ,

(3.2.19)

or Az;2×2×2

where .

(3.2.20)

The relations between Aω;2×2×2 must be explored, where ω ∈ {x, y, z, x̂, ŷ, ẑ}.
Before explaining the relations we denote column matrix and row matrix. Let
A = [aij ] be a m2 × m2 matrix, the column matrix A(c) of A is defined by

A(c) = 


A
(c)
1 A

(c)
2 · · · A

(c)
m2

A
(c)
m2+1 A

(c)
m2+2 · · · A

(c)
2m2

...
...

. . .
...

A
(c)

(m2−1)m2+1 A
(c)

(m2−1)m2+2 · · · A
(c)

m4




,
(3.2.21)

A
(c)
alpha = 



a1α a2α · · · am2α

a(m2+1)α a(m2+2)α · · · a(2m2)α
...

...
. . .

...
a((m2−1)m2+1)α a((m2−1)m2+2)α · · · am4α


 ,

(3.2.22)
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where1 ≤ α ≤ m4.
And the row matrix A(r) of A is defined by

A(r) = 


A
(r)
1 A

(r)
2 · · · A

(r)

m2

A
(r)

m2+1 A
(r)

m2+2 · · · A
(r)

2m2

...
...

. . .
...

A
(r)

(m2−1)m2+1 A
(r)

(m2−1)m2+2 · · · A
(r)

m4




,
(3.2.23)

A
(r)
α = 



aα1 aα2 · · · aαm2

aα(m2+1) aα(m2+2) · · · aα(2m2)
...

...
. . .

...
aα((m2−1)m2+1) aα((m2−1)m2+2) · · · aαm4


 ,

(3.2.24)

where 1 ≤ α ≤ m4. Therefore, from some observations, Ax;2×2×2 can be
represented by ay;j1j2 as

Ax;2×2×2 = A
(r)
y;2×2×2.(3.2.25)

The remainder of this subsection is devoted to construct Ax̂;2×m2×m3 from
Ax;2×2×2 by the following three steps, where Ax̂;2×m2×m3 represented the or-
dering matrix of Σ2×m2×m3 according to [x̂]-ordering generated from Σ2×2×2.

Step I : Use [x]-ordering on Z1×m2×2 by

2m2-2 2

2m2-3 2m2-1

y

(3.2.26)

and introduce ordering matrix Ax;2×m2×2 for Σ2×m2×2.

Step II : Convert [x]-ordering into [x̂]-ordering on Z1×m2×2 by

2 2 2

(3.2.27)

and introduce ordering matrix Ax̂;2×m2×2 for Σ2×m2×2.
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Step III : Define [x̂]-ordering on Z1×m2×m3 by

(m3-1)m2+1 (m3-1)m2+2 3 2

z(3.2.28)

and introduce ordering matrix Ax̂;2×m2×m3 for Σ2×m2×m3 .
To introduce Ax;2×m2×2, define

ay;2×m2×2;j1j2...j2m2
= ay;2×2×2;j1j2⊕̂ay;2×2×2;j2j3⊕̂ · · · ⊕̂ay;2×2×2;jm2−1jm2

= ay;j1 ⊕ ay;j2 ⊕ · · · ⊕ ay;jm2
,(3.2.29)

where 1 ≤ jk ≤ 24 and 1 ≤ k ≤ m2. Herein, a wedge direct sum ⊕̂ is used
for 2 × 2 × 2 patterns whenever they can attached together.

Now, Ax;2×m2×2 can be obtained as follows.

Theorem 3.1. For any m2 ≥ 2, Σ2×m2×2 = {ay;j1j2...jm2
}, where ay;j1j2...j2m2

is
given in (3.2.29). Furthermore, the ordering matrix Ax;2×m2×2 = [ay;j1j2...jm2

]
which is a 22m2 × 22m2 matrix can be decomposed into following matrices

Ax;2×m2×2 = [Ax;2×m2×2;j1]2m2×2m2 ,

where 1 ≤ j1 ≤ 22m2 . For fixed j1, j2, . . . , jk ∈ {1, 2, . . . , 22m2},
Ax;2×m2×2;j1j2...jk

= [Ax;2×m2×2;j1j2...jkjk+1
]m2×m2 ,

where 1 ≤ jk+1 ≤ 22m2 and k ∈ {1, 2, · · · , m2−2}. For fixed j1, j2, · · · , jm2−1,

Ax;2×m2×2;j1j2...jm2−1 = [ay;2×m2×2;j1j2...jm2−1jm2
]2m2×2m2 ,

where ay;2×m2×2;j1j2...jm2
is defined in (3.2.29).

Proof. From (3.2.15), uα1α2α3 can be solved in terms of jα2 , i.e., we have

u1α21 = [
jα2 − 1

23
],(3.2.30)

u1α22 = [
jα2 − 1 − 23u1α21

22
],(3.2.31)

u2α21 = [
jα2 − 1 − 23u1α21 − 22u1α22

2
],(3.2.32)

u2α22 = jα2 − 1 − 23u1α21 − 22u1α22 − 2u2α21,(3.2.33)
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where [ ] is the Gauss symbol. From (3.2.30) to (3.2.33), we have the following
table.

jα2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
u1α21 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
u1α22 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
u2α21 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
u2α22 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

For any m2 ≥ 2, we have

im2;1 = 1 +

m2∑

α2=1

(22(m2−α2)+1u1α21 + 22(m2−α2)u1α22),(3.2.34)

im2;2 = 1 +

m2∑

α2=1

(22(m2−α2)+1u2α21 + 22(m2−α2)u2α22).(3.2.35)

From above formulae, we have

im2+1;1 = 22(im2;1 − 1) + 2u1(m2+1)1 + u1(m2+1)2 + 1,

im2+1;2 = 22(im2;2 − 1) + 2u2(m2+1)1 + u2(m2+1)2 + 1.

Now, by induction on m2 the theorem follows from last two formulae and the
above table. The proof is complete.

Remark 3.2. By the similar method, the following relations ca be derived
but the detailed proof is omitted here for brevity.

Ax̂;2×2×m3 = [az;2×2×m3;k1k2...km3−1km3
]2m3×2m3(3.2.36)

Ay;m1×2×2 = [ax;m1×2×2;i1i2...im1−1im1
]2m1×2m1(3.2.37)

Aŷ;2×2×m3 = [aẑ;2×2×m3;k1k2...km3−1km3
]2m3×2m3(3.2.38)

Az;m1×2×2 = [ax̂;m1×2×2;i1i2...im1−1im1
]2m1×2m1(3.2.39)

Aẑ;2×m2×2 = [aŷ;2×m2×2;j1j2...jm2−1jm2
]2m2×2m2(3.2.40)

Next, [x]-ordering is converted into [x̂]-ordering for Z1×m2×2. Since Z1×m2×2 =
{(1, α2, α3) : 1 ≤ α2 ≤ m2, 1 ≤ α3 ≤ 2}, the position (α2, α3) is the α-th in
(3.2.26), where

α = 2(α2 − 1) + α3.(3.2.41)

In (3.2.27), the position of (1, α2, α3) is the α̂-th, where

α̂ = m2(α3 − 1) + α2.(3.2.42)



3.2. THREE DIMENSIONAL PATTERNS GENERATION PROBLEMS91

It is easy to verify

α̂ = m2α + (1 − 2m2)[
α − 1

2
] + (1 − m2),(3.2.43)

or

α̂ = k if α = 2k − 1,

and

α̂ = m2 + k if α = 2k,

1 ≤ k ≤ m2.

Now, the ordering [x̂] in (3.2.27) on Z1×m2×2 can be extended to Z1×m2×m3

by (3.2.28). For a fixed m2, [x̂]-ordering on Z1×m2×m3 is clearly one di-
mensional; it grows in z-direction. With ordering (3.2.28) on Z1×m2×m3 , for
U = (uα1α2α3) ∈ Σ2×m2×m3 , denoted by

îα1 = 1 +

m2∑

α2=1

m3∑

α3=1

uα1α2α32
m2(m3−α3)+(m2−α2),(3.2.44)

where α1 = 1, 2. Then, we obtain

x̂(U) = 2m2m3(î1 − 1) + î2.(3.2.45)

Now, let ax̂;î1î2
= U = (uα1α2α3), then we have new ordering matrix Ax̂;2×m2×2 =

[ax̂;2×m2×2;î1î2
] for Σ2×m2×2. The relationship between Ax;2×m2×2 and Ax̂;2×m2×2

is established before constructing Ax̂;2×m2×m3 from Ax̂;2×m2×2 for m3 ≥ 3.
We firstly established a conversion sequence of orderings from (3.2.26) to

(3.2.27). Where Pk denotes the permutation of N2m = {1, 2, · · · , 2m2} such
that Pk(k + 1) = k,Pk(k) = k + 1 and the other numbers are fixed. We also
denote Pk the permutation on Z1×m2×2 such that it exchanges k and k+1
and maintains the other positions fixed, i.e,

· k + 1 · ·
· · k ·

Pk−→ · k · ·
· · k + 1 ·(3.2.46)

Obviously (3.2.26) can be converted into (3.2.27) in many ways by using
sequence of Pk. Here, we present a systematic approach.

Lemma 3.3. For m2 ≥ 2, (3.2.26) can be converted into (3.2.27) by the

following sequences of m2(m2−1)
2

permutations successively

(P2P4 · · ·P2m2−2)(P3P5 · · ·P2m2−3) · · ·
(PkPk+2 · · ·P2m2−k) · · · (Pm2−1Pm2+1)Pm2 ,

(3.2.47)

2 ≤ k ≤ m2.
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Proof. When m2 = 2 and 3, verifying that (3.2.47) can convert (3.2.26) into
(3.2.27) is relatively easy.

When m2 ≥ 4, and for any 2 ≤ k ≤ m2, applying

(P2P4 · · ·P2m2−2)(P3P5 · · ·P2m2−3) · · · (PkPk+2 · · ·P2m2−k)(3.2.48)

to (3.2.26), then there are two intermediate cases:
(i) when 2 ≤ k ≤ [m2

2
], then we have

1 2 · · · k k + 2 k + 4 · · · k + 2ℓ · · · · · · 2m2 − 3k + 1 · · · 2m2 − k − 22m2 − k

k + 1 k + 3 · · · 3k − 1 · · · · · · · · · 3k − 1 + 2ℓ · · · 2m2 − k − 12m2 − k + 1 · · · 2m2 − 1 2m2

(3.2.49)

where 0 ≤ ℓ ≤ m2 − 2k.
(ii) when [m2

2
] + 1 ≤ k ≤ m2 − 1, then we have

· · ·· · ·· · ·· · ·

· · ·· · ·· · ·· · ·1 2 k − 1 k k + 2 2m2 − k

k + 1 2m2 − k − 12m2 − k + 12m2 − k + 2 2m2 − 1 2m2

(3.2.50)

When k = m2 in (3.2.50), we have (3.2.27). We prove (3.2.49) and (3.2.50)
by mathematical induction on k. When k=2, it is relatively easy to verify
that (3.2.26) is converted into

· · ·· · ·· · ·

· · ·· · ·· · ·1 2 4 2m2 − 12m2 − 2

3 5 2m2 − 32m2 − 1 2m2

by P2P4 · · ·P2m2−2, i.e., (3.2.49) holds for k=2. Next, assume that (3.2.49)
holds for k ≤ [m

2
]. Then, by applying Pk+1Pk+2 · · ·P2m2−k−1 to (3.2.49), it can

be verified that (3.2.49) holds for k+1 when k+1 ≤ [m2

2
] or becomes (3.2.50)

when k + 1 ≥ [m2

2
]. When k ≥ [m2

2
] + 1, we apply Pk+1Pk+3 · · ·P2m2−k−1 to

(3.2.50). It can also be verified that (3.2.50) holds for k+1. Finally, we
conclude that (4.27) holds for k = m2. The proof is thus complete.

By using Lemma 3.3, Ax;2×m2×2 can be converted into Ax̂;2×m2×2 by the
following construction. Let

P =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 ,(3.2.51)
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and for 2 ≤ j ≤ 2m2 − 2, as denoted by

Px;2m2;j = I2j−1 ⊗ P ⊗ I22m2−j−1 ,(3.2.52)

where Ik is the k × k identity matrix. Furthermore, let

Px;2×m2×2 = (P2m2;2P2m2;4 · · ·P2m2;2m2−2)
· · · (P2m2;k · · ·P2m2;2m2−k) · · · (P2m2;m2),

(3.2.53)

2 ≤ k ≤ m2. Then, we have the following theorem.

Theorem 3.4. For any m2 ≥ 2,

Ax̂;2×m2×2 = Pt
x;2×m2×2Ax;2×m2×2Px;2×m2×2.(3.2.54)

Proof. From (3.2.41), in Z1×m2×2 the position (α2, α3) is the α-th in (3.2.26),
where α = 2(α2 − 1) + α3. Define

ℓα = 1 + 2u1α2α3 + u2α2α3 ,(3.2.55)

1 ≤ ℓα ≤ 4 and 1 ≤ α ≤ 2m2. For U = (uα1α2α3) ∈ Σ2×m2×2, from Theorem
3.1 it can be denoted by ay;2×m2×2;j1j2...jm2

and by (3.2.15) for fixed 1 ≤ α2 ≤
m2 we have

jα2 = 1 + 23u1α21 + 22u1α22 + 2u2α21 + u2α22

= 22(ℓ2α2−1) + ℓ2α2 + 1,

where 1 ≤ jα2≤16. Hence the relation between ay;jα2
and wy;ℓ2α2−1ℓ2α2

is



ay;1 ay;2 ay;3 ay;4

ay;5 ay;6 ay;7 ay;8

ay;9 ay;10 ay;11 ay;12

ay;13 ay;14 ay;15 ay;16


 =




w11 w12 w21 w22

w13 w14 w23 w24

w31 w32 w41 w42

w33 w34 w43 w44


 .

Therefore, the pattern in ordering matrix Ax;2×m2×2 can be represented by

ay;2×m2×2;j1j2...jm2
= ay;j1 ⊕ ay;j2 ⊕ · · · ⊕ ay;jm2

= wy;ℓ1ℓ2 ⊕ wy;ℓ3ℓ4 ⊕ · · · ⊕ wy;ℓ2m2−1ℓ2m2

≡ wy;ℓ1ℓ2...ℓ2m2
.

It is easy to verify that for any 1 ≤ k ≤ 2m2 − 1,

P t
2m2;kAx;2×m2×2P2m2;k

= P t
2m2;k[wy;ℓ1ℓ2...ℓkℓk+1...ℓ2m2

]P2m2;k

= [wy;ℓ1ℓ2...ℓk+1ℓk...ℓ2m2
],

i.e., P2m2;k exchanges ℓk and ℓk+1 in Ax;2×m2×2. Therefore, from (3.2.53) and
Lemma 3.3, (3.2.54) follows.
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Now, in Theorem 3.4, as denoted by

Ax̂;2×m2×2 = [ax̂;2×m2×2;î1 î2
],(3.2.56)

1 ≤ î1, î2 ≤ 2m2. And by Remark 3.2, Ax̂;2×m2×2 could be represented by
az;2×m2×2;k1k2 , where 1 ≤ k1, k2 ≤ 22m2 . The [x̂]-expression

Ax̂;2×m2×2 = A
(r)
z;2×m2×2(3.2.57)

for Σ2×m2×2 enable us to construct Ax̂;2×m2×m3 for Σ2×m2×m3 . Indeed, for
fixed m2 ≥ 2 and m3 ≥ 2, let

ax̂;2×m2×m3;î1 î2
= az;2×m2×m3;k1k2...km3

= az;2×m2×2;k1k2⊕̂az;2×m2×2;k2k3⊕̂ · · · ⊕̂az;2×m2×2;km3−1km3
.(3.2.58)

Therefore, by a similar argument as in proving Theorem 3.1 we have the
following theorem for Ax̂;2×m2×m3 . The detailed proof is omitted here for
brevity.

Theorem 3.5. By fixing m2 ≥ 2 and for any m3 ≥ 2, the ordering matrix
Ax̂;2×m2×m3 with respect to [x̂]-ordering can be expressed as

Ax̂;2×m2×m3 = [Ax̂;2×m2×m3;k1]2m2×2m2 ,(3.2.59)

where 1 ≤ k1 ≤ 22m2 . For fixed 1 ≤ k1, k2, · · · , kl ≤ 22m2 ,

Ax̂;2×m2×m3;k1k2···kl
= [Ax̂;2×m2×m3;k1k2···klkl+1

]2m2×2m2(3.2.60)

where 1 ≤ kl+1 ≤ 22m2 and 1 ≤ l ≤ m3 − 2. For fixed k1, k2, · · · , km3−1,

Ax̂;2×m2×m3;k1k2···km3−1 = [az;2×m2×m3;k1k2...km3
],(3.2.61)

where az;2×m2×m3;k1k2...km3
is given by (3.2.58).

Remark 3.6. Similarly, the following relations can be derived but the de-
tailed proof is omitted here for brevity.

Ax;2×m2×m3 = [ay;2×m2×m3;j1j2...jm2
]2m2m3×2m2m3

Aŷ;m1×2×m3 = [aẑ;m1×2×m3;k1k2...km3
]2m1m3×2m1m3

Ay;m1×2×m3 = [ax;m1×2×m3;i1i2...im1
]2m1m3×2m1m3

Aẑ;m1×m2×2 = [aŷ;m1×m2×2;j1j2...jm2
]2m1m2×2m1m2

Az;m1×m2×2 = [ax̂;m1×m2×2;i1i2...im1
]2m1m2×2m1m2
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§ 3.3 Transition Matrices and Spatial Entropy

3.3.1 Transition Matrices

With the ordering matrices Ax̂;2×m2×m3 for Σ2×m2×m3 having been defined,
higher order transition matrices Tx̂;2×m2×m3 can now be derived from Tx;2×2×2.
As in the two dimensional case [4], assume that we have basic set B ⊂ Σ2×2×2.
Define the transition matrix Tx;2×2×2 = Tx;2×2×2(B) by

Tx;2×2×2 = [tx;2×2×2;i1i2 ]24×24 ,(3.3.1)

where

tx;2×2×2;i1i2 = 1 if ax;2×2×2;i1i2 ∈ B,

= 0 otherwise.
(3.3.2)

Then, the transition matrix Tx;2×m2×2 is a 22m2 × 22m2 matrix with entries
tx;2×m2×2;i1i2 , where

tx;2×m2×2;i1i2 = ty;2×m2×2;j1j2...jm2

=
m2−1∏

k=1

ty;2×2×2;jkjk+1
.(3.3.3)

Before Tx;2×m2×2 is introduced, three products of matrices are defined as
follows.

Definition 3.7. For any two matrices M = (Mij) and N = (Nkl), the Kro-
necker product (tensor product) M ⊗ N of M and N is defined by

(3.3.4) M ⊗ N = (MijN).

For any n ≥ 1,
⊗Nn = N ⊗ N ⊗ · · · ⊗ N,

n-times in N.
Next, for any two m × m matrices

P = (Pij) and Q = (Qij)

where Pij and Qij are numbers or matrices, the Hadamard product P ◦ Q is
defined by

(3.3.5) P ◦ Q = (Pij · Qij),
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where the product Pij · Qij of Pij and Qij may be a multiplication between
numbers, between numbers and matrices or between matrices whenever it is
well-defined.

Finally, product ⊗̂ is defined as follows. For any 4 × 4 matrix

(3.3.6) M2 =




m11 m12 m21 m22

m13 m14 m23 m24

m31 m32 m41 m42

m33 m34 m43 m44


 =

[
M2;1 M2;2

M2;3 M2;4

]

and any 2 × 2 matrix

(3.3.7) N =

[
N1 N2

N3 N4

]
,

where mij are numbers and Nk are numbers or matrices, for 1 ≤ i, j, k ≤ 4,
define

(3.3.8) M2⊗̂N =




m11N1 m12N2 m21N1 m22N2

m13N3 m14N4 m23N3 m24N4

m31N1 m32N2 m41N1 m42N2

m33N3 m34N4 m43N3 m44N4


 .

Furthermore, for n ≥ 1, the n + 1 th order of transition matrix of M2 is
defined by

Mn+1 ≡ ⊗̂Mn
2 = M2⊗̂M2⊗̂ · · · ⊗̂M2,

n-times in M2. More precisely,

Mn+1 = M2⊗̂(⊗̂Mn−1
2 ) =

[
M2;1 ◦ (⊗̂Mn−1

2 ) M2;2 ◦ (⊗̂Mn−1
2 )

M2;3 ◦ (⊗̂Mn−1
2 ) M2;4 ◦ (⊗̂Mn−1

2 )

]

(3.3.9)

=




m11Mn;1 m12Mn;2 m21Mn;1 m22Mn;2

m13Mn;3 m14Mn;4 m23Mn;3 m24Mn;4

m31Mn;1 m32Mn;2 m41Mn;1 m42Mn;2

m33Mn;3 m34Mn;4 m43Mn;3 m44Mn;4


 =

[
Mn+1;1 Mn+1;2

Mn+1;3 Mn+1;4

]
,

where

Mn = ⊗̂Mn−1
2 =

[
Mn;1 Mn;2

Mn;3 Mn;4

]
.

Here, the following convention is adopted,

⊗̂M0
2 = E2×2.
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From Theorem 3.1, we can obtain results for Tx;2×m2×2 as Tn in Theorem
3.1 in [5]. Indeed, we have

Theorem 3.8. Let Tx;2×2×2 be a transition matrix given by (3.3.1) and
(3.3.2). Then, for higher order transition matrices Tx;2×m2×2, m2 ≥ 3, we
have the following three equivalent expressions as follows:
(I) Tx;2×m2×2 can be decomposed into m2 successive 4 × 4 matrices

Tx;2×m2×2 = [Tx;2×m2×2;j1 ]4×4,

where 1 ≤ j116. For fixed 1 ≤ j1, j2, . . . , jk ≤ 16,

Tx;2×m2×2;j1j2...jk
= [Tx;2×m2×2;j1j2...jkjk+1

]4×4,

where 1 ≤ jk+116 and 1 ≤ k ≤ m2 − 1. For fixed j1, j2, . . . , jm2−1 ∈
{1, 2, . . . , 16},

Tx;2×m2×2;j1j2...jm2−1 = [ty;2×m2×2;j1j2...jm2
]4×4,

where ty;2×m2×2;j1j2...jm2
is defined in (3.3.3).

(II) Starting from

Tx;2×2×2 = [Tx;2×2×2;j1]4×4

and

Tx;2×2×2;j1 = [ty;2×2×2;j1j2 ]4×4,

for m2 ≥ 3,Tx;2×m2×2 can be obtained from Tx;2×(m2−1)×2 by replacing Tx;2×2×2;j1

with

(Tx;2×2×2;j1)4×4 ◦ (Tx;2×2×2)4×4.(3.3.10)

(III) For m2 ≥ 3,

Tx;2×m2×2 = (Tx;2×(m2−1)×2)22(m2−1)×22(m2−1)

◦(E22(m2−2) ⊗ Tx;2×2×2)22m2×22m2 ,
(3.3.11)

where E2k is the 2k × 2k matrix with 1 as its entries.

Proof. (I) The proof is to simply replace Ax;2×m2×2;j1j2...jk
and ax;2×m2×2;j1j2...jk

by Tx;2×m2×2;j1j2...jk
and tx;2×m2×2;j1j2...jk

in Theorem 3.1 respectively.
(II) follows from (I) directly.
(III) follows from (I), we have Tx;2×m2×2 = [Tx;2×m2×2;j1], 1 ≤ j1 ≤ 24. And
by (I), we get following formula

Tx;2×m2×2 = [ay;2×2×2;j1j2Tx;2×(m2−1)×2;j2]

= (Tx;2×(m2−1)×2)22(m2−1)×22(m2−1)⊗̂[E22(m2−2) ⊗ Tx;2×2×2].

The proof is complete.
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Remark 3.9. As mentioned in Remark 3.2 we have the following formula
but the detailed proof is omitted for brevity.

Tx̂;2×2×m3 = [tz;2×2×m3;k1k2...km3−1km3
]2m3×2m3

Ty;m1×2×2 = [tx;m1×2×2;i1i2...im1−1im1
]2m1×2m1

Tŷ;2×2×m3 = [tẑ;2×2×m3;k1k2...km3−1km3
]2m3×2m3

Tz;m1×2×2 = [tx̂;m1×2×2;i1i2...im1−1im1
]2m1×2m1

Tẑ;2×m2×2 = [tŷ;2×m2×2;j1j2...jm2−1jm2
]2m2×2m2

Now, the transition matrix Tx̂;2×m2×2, with respect to ordering matrix
Ax̂;2×m2×2. Additionally, by using Theorem 3.4, we have

Theorem 3.10.

Tx̂;2×m2×2 = Pt
x;2×m2×2Tx;2×m2×2Px;2×m2×2.(3.3.12)

Proof. The proof is to simply replaced ay;2×m2×2;j1j2...jm2
by ty;2×m2×2;j1j2...jm2

in Theorem 3.4.

By applying Theorem 3.5, transition matrix Tx̂;2×m2×m3 can be obtained
from Tx̂;2×m2×2. According to (3.2.57), we obtained the transition matrix

Tx̂;2×m2×2 = [Tx̂;2×m2×2;k1 ](3.3.13)

and

Tx̂;2×m2×2;k1 = [tz;2×m2×2;k1k2].(3.3.14)

Therefore, we have

Theorem 3.11. Let Tx̂;2×m2×2 be a transition matrix given by (3.3.13) and
(3.3.14). Then, for higher order transition matrices Tx̂;2×m2×m3 , m2 ≥ 3, we
have the following three equivalent expressions as follows:
(I) Tx̂;2×m2×m3 can be decomposed into m3 successive 2m2 × 2m2 matrices:

Tx̂;2×m2×m3 = [Tx̂;2×m2×m3;k1]2m2×2m2 ,

where 1 ≤ k1 ≤ 22m2 . For fixed 1 ≤ k1, k2, . . . , kl ≤ 22m2 ,

Tx̂;2×m2×m3;k1k2...kℓ = [Tx̂;2×m2×m3;k1k2...kℓkℓ+1
]2m2×2m2 ,

where 1 ≤ kℓ+1 = 1 ≤ 22m2 and 1 ≤ l ≤ m3 − 2,

Tx̂;2×m2×m3;k1k2...km3−1 = [tz;2×m2×m3;k1k2...km3
]2m2×2m2 ,
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where 1 ≤ km3 ≤ 22m2 and by (3.2.58)

tz;2×m2×m3;k1k2...km3
=

m3−1∏

l=1

tz;2×m2×2;klkl+1
.(3.3.15)

(II) For any m3 ≥ 3, Tx̂;2×m2×m3 can be obtained from Tx̂;2×m2×(m3−1) by
replacing Tx̂;2×m2×2;k1 with

(Tx̂;2×m2×2;k1)2m2×2m2 ◦ (Tx̂;2×m2×2)2m2×2m2 .(3.3.16)

(III) Furthermore, for m3 ≥ 3 we have

Tx̂;2×m2×m3 = (Tx̂;2×m2×(m3−1))2m2(m3−1)×2m2(m3−1)

◦(E2m2(m3−2) ⊗ Tx̂;2×m2×2)2m2(m3−1)×2m2(m3−1).
(3.3.17)

The proof closely resembles that when proving Theorem 3.1 and Theorem
3.8. Details of the proof are omitted for brevity.

Remark 3.12. As mentioned in Remark 3.6, we also have the following
formula but the detailed proof is omitted for brevity.

Tx;2×m2×m3 = [ty;2×m2×m3;j1j2...jm2
]2m2m3×2m2m3

Tŷ;m1×2×m3 = [tẑ;m1×2×m3;k1k2...km3
]2m1m3×2m1m3

Ty;m1×2×m3 = [tx;m1×2×m3;i1i2...im1
]2m1m3×2m1m3

Tẑ;m1×m2×2 = [tŷ;m1×m2×2;j1j2...jm2
]2m1m2×2m1m2

Tz;m1×m2×2 = [tx̂;m1×m2×2;i1i2...im1
]2m1m2×2m1m2

Finally, the spatial entropy h(B) can be computed through the maximum
eigenvalue λm,n of Tx̂;2×m2×m3 . Indeed, we have

Theorem 3.13. Let λx̂;2,m2,m3 be the maximum eigenvalue of Tx̂;2×m2×m3 ,
then

h(B) = lim
m2,m3→∞

log λx̂;2,m2,m3

m2m3

.(3.3.18)

Proof. By the same arguements as in [16], the limit (3.1.1) is well-defined
and exists. From the construction of Tx̂;2×m2×m3 , we observe that for m2 ≥ 2
and m3 ≥ 2,

Γx̂;m1×m2×m3(B) =
∑

1≤i,j≤2m2m3

(Tm1−1
x̂;2×m2×m3

)ij

= ♯(Tm1−1
x̂;2×m2×m3

).



100 Pattern Generation Problems

As in one dimensional case, we have

lim
m1→∞

log ♯(Tm1−1
x̂;2×m2×m3

)

m1

= log λx̂;2,m2,m3,

e.g., [4]. Therefore,

h(B) = lim
m1,m2,m3→∞

log Γx̂;m1×m2×m3(B)

m1m2m3

= lim
m2,m3→∞

1

m2m3
( lim
m1→∞

log Γx̂;m1×m2×m3(B)

m1
)

= lim
m2,m3→∞

log λx̂;2,m2,m3

m2m3

The proof is complete.

Remark 3.14. Let λx;2,m2,m3 , λŷ;m1,2,m3 , λy;m1,2,m3 , λẑ;m1,m2,2 and λz;m1,m2,2

be the maximum eigenvalue of Tx;2×m2×m3 , Tŷ;m1×2×m3 , Ty;m1×2×m3 , Tẑ;m1×m2×2

and Tz;m1×m2×2 respectively, then it can be shown that

h(B) = lim
m2,m3→∞

log λx;2,m2,m3

m2m3

= lim
m1,m3→∞

log λŷ;m1,2,m3

m1m3

= lim
m1,m3→∞

log λy;m1,2,m3

m1m3

= lim
m1,m2→∞

log λẑ;m1,m2,2

m1m2

= lim
m1,m2→∞

log λz;m1,m2,2

m1m2
.

but the detailed proof is omitted here for brevity.

3.3.2 Computation of λm,n and entropies

From the last subsection, we obtained a systematic means of writing down
Tx̂;2×m2×m3 from Tx;2×2×2. As in a two dimensional case [4], a recursion for-
mulas for λx̂;2,m2,m3 can be obtained in special structure. To demonstrate the
methods developed in the last subsection, we provide an illustrative example
in which Tx̂;2×m2×m3 and λx̂;2,m2,m3 can be derived explicitly. More complete
results will be appeared later.
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Denoted by

G =

[
1 1
1 0

]
and E = E2 =

[
1 1
1 1

]
,(3.3.19)

and let

Tx;2×2×2 = ⊗(G ⊗ E)2,

= (G ⊗ E) ⊗ (G ⊗ E).
(3.3.20)

Proposition 3.15. Let Tx;2×2×2 be in (3.3.19) and (3.3.20). Then,

(i) Tx;2×m2×2 = ⊗(G ⊗ E)m2 ,

(ii) Tx̂;2×m2×2 = (⊗G)m2 ⊗ (⊗E)m2 ,

(iii) Tx̂;2×m2×m3 = (⊗G)m2(m3−1) ⊗ (⊗E)m2 .

(3.3.21)

Furthermore, for the maximum eigenvalue λx̂;2,m2,m3 of Tx̂;2×m2×m3 , we have
the following recursion formulas:

λx̂;2,m2+1,m3 = 2gm3−1λx̂;2,m2,m3(3.3.22)

and

λx̂;2,m2,m3+1 = gm2λx̂;2,m2,m3(3.3.23)

for m2, m3 ≥ 2 with

λx̂;2,2,2 = (2g)2.(3.3.24)

The spatial entropy is

h(Tx;2×2×2) = log g,(3.3.25)

where g = 1+
√

5
2

, the golden-mean.

Proof. The proof is only described briefly, and the details are omitted for
brevity.
(i) can be proved by Theorem 3.8 and induction on m. Indeed, by (3.3.11),
we have

Tx;2×3×2 = (Tx;2×2×2)4×4 ◦ (E22 ⊗ Tx;2×2×2)4×4

= (G ⊗ E ⊗ G ⊗ E)4×4 ◦ (E ⊗ E ⊗ (G ⊗ E ⊗ G ⊗ E))4×4

= (G ◦ E) ⊗ (E ◦ E) ⊗ (G ◦ G) ⊗ (E2×2 ◦ (E ⊗ G ⊗ E))2×2

= ⊗(G ⊗ E)3.
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Assume that Tx;2×(m2−1)×2 = ⊗(G ⊗ E)m2−1. Then by (3.3.11) again, we
have

Tx;2×m2×2 = (Tx;2×(m2−1)×2) ◦ (⊗(E)2(m2−2) ⊗ Tx;2×2×2))
= (⊗(G ⊗ E)m2−1)22m2−2×22m2−2 ◦ ((⊗(E)m2−2) ⊗ (⊗(G ⊗ E)2))22m2−2×22m2−2

= (⊗(G ⊗ E)m2−2 ⊗ (G ⊗ E))22m2−2×22m2−2

◦ (⊗(E ⊗ E)m2−2 ⊗ (G ⊗ E) ⊗ (G ⊗ E))22m2−2×22m2−2

= ⊗[(G ◦ E) ⊗ (E ◦ E)]m2−2 ⊗ (G ◦ G) ⊗ (E ◦ (E ⊗ G ⊗ E))
= ⊗(G ⊗ E)m2−2 ⊗ (G ⊗ E) ⊗ (G ⊗ E)
= ⊗(G ⊗ E)m2 .

(ii) The following property for matrices is needed and the detailed proof
omitted: For any two 2 × 2 matrices A and B, we have

P (A ⊗ B)P = B ⊗ A,(3.3.26)

where P is given in (3.2.51). We also prove in (3.3.21) by induction on m2.
When m2 = 2, by Theorem 3.10,

Tx̂;2×2×2 = Pt
x;2×2×2Tx;2×2×2Px;2×2×2

= (P4;2)
tTx;2×2×2P4;2

= (I2 ⊗ P ⊗ I2)((G ⊗ E) ⊗ (G ⊗ E))(I2 ⊗ P ⊗ I2)
= G ⊗ (P (E ⊗ G)P ) ⊗ E

= G ⊗ G ⊗ E ⊗ E

by (3.3.26).
Now, assume that (3.3.21) holds for m2 − 1, i.e.

Tx̂;2×(m2−1)×2 = (⊗(G)m2−1) ⊗ (⊗(E)m2−1).

Then

Tx̂;2×m2×2

= Pt
x;2×m2×2Tx;2×m2×2Px;2×m2×2

= [(P2m2;2P2m2;4 · · ·P2m2;2m2−2)(P2m2;3P2m2;5 · · ·P2m2;2m2−3) · · · (P2m2;m)]t

Tx;2×m2×2[(P2m2;2P2m2;4 · · ·P2m2;2m2−2)(P2m2;3P2m2;5 · · ·P2m2;2m2−3) · · · (P2m2;m)]
= (P2m2;m) · · · (P2m2;3P2m2;5 · · ·P2m2;2m2−3)[(P2m2;2P2m2;4 · · ·P2m2;2m2−2)
⊗(G ⊗ E)m2)(P2m2;2P2m2;4 · · ·P2m2;2m2−2)](P2m;3P2m;5 · · ·P2m;2m2−3) · · · (P2m;m)

= (P2m;m) · · · (P2m;3P2m;5 · · ·P2m;2m2−3)[G ⊗ (⊗(G ⊗ E)m2−1) ⊗ E]
(P2m;3P2m;5 · · ·P2m;2m2−3) · · · (P2m;m)

= G ⊗ {(P2(m2−1);m2−1) · · · (P2(m2−1);2P2(m2−1);4 · · ·P2(m2−1);2(m2−1)−2)[⊗(G ⊗ E)m2−1]
(P2(m2−1);2P2(m2−1);4 · · ·P2(m2−1);2(m2−1)−2) · · · (P2m2−1;m2−1)} ⊗ E

= G ⊗ (Pt
x;2×(m2−1)×2Tx;2×(m2−1)×2Px;2×(m2−1)×2) ⊗ E

= G ⊗ Tx̂;2×(m2−1)×2 ⊗ E

= G ⊗ ((⊗(G)m2−1) ⊗ (⊗(E)m2−1)) ⊗ E

= (⊗(G)m2) ⊗ (⊗(E)m2).
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(iii) For a fixed m2, we prove the results by induction on m3 ≥ 2. Assume
that (3.3.21) holds for m3 − 1, i.e.,

Tx̂;2×m2×(m3−1) = (⊗(G)m2×(m3−2)) ⊗ (⊗(E)m2).

Then, by (3.3.17), we have

Tx̂;2×m2×m3 = Tx̂;2×m2×(m3−1) ◦ ((⊗(E)m2(m3−2)) ⊗ Tx̂;2×m2×2)
= ((⊗(G)m2(m3−2)) ⊗ (⊗(E)m2)) ◦ ((⊗(E)m2(m3−2)) ⊗ (⊗(G)m2) ⊗ (⊗(E)m2))
= (⊗(G)m2(m3−2)) ⊗ (⊗(G)m2) ⊗ (⊗(E)m2)
= (⊗(G)m2(m3−1)) ⊗ (⊗(E)m2).

As for maximum eigenvalue λx̂;2,m2,m3 , verifying (3.3.24) is easy. To show
(3.3.22) for fixed m3, by using (3.3.21), we have

Tx̂;2×(m2+1)×m3
= (⊗(G)(m2+1)(m3−1)) ⊗ (⊗(E)m2+1)
= (⊗(G)m3−1) ⊗ (⊗(G)m2(m3−1)) ⊗ (⊗(E)m2) ⊗ E

= (⊗(G)m3−1) ⊗ Tx̂;2×m2×m3 ⊗ E,

which implies

λx̂;2,m2+1,m3 = 2gn−1λx̂;2,m2,m3 ,

see [12].
Similarly, for a fixed m2, to prove (3.3.23), by using (3.3.21) again, we have

Tx̂;2×m2×(m3+1) = (⊗(G)m2m3) ⊗ (⊗(E)m2)
= (⊗(G)m2) ⊗ (⊗(G)m2(m3−1)) ⊗ (⊗(E)m2)
= (⊗(G)m2) ⊗ Tx̂;2×m2×m3 ,

which implies

λx̂;2,m2,m3+1 = gm2λx̂;2,m2,m3 .

Finally, (3.3.25) follows from (3.3.22), (3.3.23) and Theorem 3.13. The proof
is thus complete.

§ 3.4 Connecting Operator

As stated in the introduction, in this section we will introduce the connecting
operator and to use it to derive a recursive formula between an elementary
pattern of order (m, n). And use it to yield a lower bound on entropy.
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3.4.1 Connecting Operator in z-direction

This subsection derives connecting operators and investigates their proper-
ties. For brevity, we just discuss the connecting operator in z-direction and
the other cases are similar and we will state them in Remarks follows. For
clarity, such as in the former section two symbols on lattice Z2×2×2 are ex-
amined first.

As state in Theorem 3.5, the ordering matrix Ax̂;2×m2×m3 can be rep-
resented by Ax̂;2×m2×m3;α, where 1 ≤ α ≤ 22m2 , is a 2m2(m3−1) × 2m2(m3−1)

matrix.
For matrices multiplication, the indices of Ax̂;2×m2×m3 are conveniently

expressed as




Ax̂;2×m2×m3;11 Ax̂;2×m2×m3;12 · · · Ax̂;2×m2×m3;12m2

Ax̂;2×m2×m3;21 Ax̂;2×m2×m3;22 · · · Ax̂;2×m2×m3;22m2

...
...

. . .
...

Ax̂;2×m2×m3;2m21 Ax̂;2×m2×m3;2m22 · · · Ax̂;2×m2×m3;2m22m2 .


(3.4.1)

Clearly, Ax̂;2×m2×m3;α = Ax̂;2×m2×m3;β1β2 , where α = α(β1, β2) = 2m2(β1 −
1) + β2. For m1 ≥ 2, the elementary pattern in the entries of A

m1

x̂;2×m2×m3

is represented by Ax̂;2×2×2;β1β2Ax̂;2×2×2;β2β3 · · ·Ax̂;2×2×2;βm1βm1+1 where βr ∈
{1, 2, · · · , 2m2}. A lexicographic order for multiple indices Im1+1 = (β1β2 · · ·βmβm1+1)
is introducing, using

K(Im1+1) = 1 +

m1∑

r=2

2m2(m1−r)(βr − 1).(3.4.2)

Now, A
(k)
x̂;m1+1,m2,m3;α could be represented by

Ax̂;2×m2×m3;β1β2Ax̂;2×m2×m3;β2β3 · · ·Ax̂;2×m2×m3;βm1βm1+1,(3.4.3)

where

α = α(β1, (βm1 + 1))) = 2m2(β1 − 1) + βm1+1(3.4.4)

and

k = K(Im1+1)(3.4.5)

is given in (3.4.2). Therefore, A
m1
x̂;2×m2×m3

can be expressed as

[Ax̂;m1,m2,m3;α]2m2×2m2 ,(3.4.6)
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where 1 ≤ α ≤ 22m2 and

Ax̂;m1,m2,m3;α =

2m2(m1−1)∑

k=1

A
(k)
x̂;m1,m2,m3;α.(3.4.7)

Furthermore,

Xx̂;m1,m2,m3;α = (A
(k)
x̂;m1,m2,m3;α)t,(3.4.8)

where 1 ≤ k ≤ 2m2(m1−1), Xx̂;m1,m2,m3;α is a 2m2(m1−1) column vector that
consists of all elementary patterns in Ax̂;m1,m2,m3;α. The ordering matrix
Xx̂;m1,m2,m3 of Am1

x̂;2×m2×m3
is now defined by

[Xx̂;m1,m2,m3;α]2m2×2m2 ,(3.4.9)

where 1 ≤ α ≤ 22m2 . The ordering matrix Xx̂;m1,m2,m3 allows the elemen-
tary patterns to be tracked during the reduction from Am1

x̂;2×m2×(m3+1) to
Am1

x̂;2×m2×m3
. This careful book-keeping provides a systematic way to gen-

erate the admissible patterns and in Section 3.4.2, lower-bound estimates of
spatial entropy.

The following simplest example is studied first to illustrate the above
concept.

Example 3.16. For m1 = 2, m2 = 3, m3 = 3, the following can be easily be
verified;

A2
x̂;2×3×3 = [Ax̂;2,3,3;α1 ]23×23 ,(3.4.10)

where 1 ≤ α1 ≤ 26 and

Ax̂;2,3,3;α1 =

23∑

k=1

A
(k)
x̂;2,3,3;α1

,(3.4.11)

and for fixed α1 and k the represented pattern of A
(k)
x̂;2,3,3;α1

are as the following
form

a14 a15 a16

k2
k3

a11
a12

a13

a13

×××

×××
××

×××

×××

×××

×

.

(3.4.12)
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If we defined the red symbol is equal to 1, white symbol is equal to 0, then
α1 = 25α11+24α12+23α13+22α14+2α15+α16+1 and k = 22k1+2k2+k3+1.
Therefore

Xx̂;2,3,3;α1 = (A
(k)
x̂;2,3,3;α1

)t,(3.4.13)

where 1 ≤ k ≤ 23 and 1 ≤ α1 ≤ 26. Define

Xx̂;2,3,3;α1;α2 = (A
(k)
x̂;2,3,3;α1;α2

)t,(3.4.14)

where 1 ≤ k ≤ 23 and 1 ≤ α1, α2 ≤ 26 and the represented pattern is

A
(k)
x̂;2,3,3;α1;α2

=

a14 a15 a16

k1 k2 k3

a11
a12 a13

×××

×××

×××

×××

a24 a25 a26

a21 a22 a23

.

(3.4.15)

Hence we get, for example

Xx̂;2,3,3;1;1 = Sx̂;m3;2,3;11 · Xx̂;2,3,2;1,(3.4.16)
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and the represented patterns of Sx̂;m3;2,3;11

23×23 .(3.4.17)

The above derivation indicates that Xx̂;2,3,3;α1;α2 can reduced to Xx̂;2,3,3;α2

via multiplication with connecting operator Sx̂;m3;2,3;α1α2 . This procedure can
be extended to introduce the connecting operator Sx̂;m3;m1m2 = [Sx̂;m3;m1m2;α1α2 ],
where 1 ≤ α1, α2 ≤ 22m2 , for all m1 ≥ 2, m2 ≥ 2.

Definition 3.17. For m1 ≥ 2, m2 ≥ 2, define

(Cx̂;m3;m1m2)22m2×22m2 = (S
(r)
x̂;m3;m1m2

)22m2×22m2 ,(3.4.18)

where the row matrix S
(r)
x̂;m3;m1m2

of Sx̂;m3;m1m2 is defined in (3.2.23) and
(3.2.24). And

Cx̂;m3;m1m2;i1i2(3.4.19)

= [(Tz;2×m2×2;i1)2m2×2m2 ◦ (Tz;(m1−1)×m2×2)2m2×2m2 ]2(m1−1)m2×2(m1−1)m2

◦ (E2(m1−2)m2 ⊗ ((T
(r)
z;2×m2×2)

(c)
;i2

)2m2×2m2 )2(m1−1)m2×2(m1−1)m2

where (T
(r)
z;2×m2×2)

(c)
;α2 is the α2-th block of the matrix (T

(r)
z;2×m2×2)

(c), (T
(r)
z;2×m2×2)

(c)

is the column matrix of T
(r)
z;2×m2×2 and T

(r)
z;2×m2×2 is the row matrix of Tz;2×m2×2.
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Remark 3.18. With the similar method, we also can defined the following
connecting operators.

Cx;m2;m1m3;i1i2

= [(Ty;2×2×m3;i1)2m3×2m3 ◦ (Tz;(m1−1)×m2×2)2m3×2m3 ]2(m1−1)m3×2(m1−1)m3

◦ (E2(m1−2)m3 ⊗ ((T
(r)
y;2×2×m3

)
(c)
;i2

)2m3×2m3 )2(m1−1)m3×2(m1−1)m3

Cŷ;m3;m1m2;i1i2

= [(Tẑ;m1×2×2;i1)2m1×2m1 ◦ (Tẑ;m1×(m2−1)×2)2m1×2m1 ]2(m2−1)m1×2(m2−1)m1

◦ (E2(m2−2)m1 ⊗ ((T
(r)
ẑ;2×(m2−1)×2)

(c)
;i2

)2m1×2m1 )2(m2−1)m1×2(m2−1)m1

Cy;m1;m2m3;i1i2

= [(Tx;2×2×m3;i1)2m3×2m3 ◦ (Tx;2×(m2−1)×2)2m3×2m3 ]2(m2−1)m3×2(m2−1)m3

◦ (E2(m2−2)m3 ⊗ ((T
(r)
x;2×2×m3

)
(c)
;i2

)2m3×2m3 )2(m2−1)m3×2(m2−1)m3

Cẑ;m2;m1m3;i1i2

= [(Tŷ;m1×2×2;i1)2m1×2m1 ◦ (Tŷ;m1×(m3−1)×2)2m1×2m1 ]2(m3−1)m1×2(m3−1)m1

◦ (E2(m3−2)m1 ⊗ ((T
(r)
ŷ;2×(m3−1)×2)

(c)
;i2

)2m1×2m1 )2(m3−1)m1×2(m3−1)m1

Cz;m1;m2m3;i1i2

= [(Tx̂;2×m2×2; i1)2m2×2m2 ◦ (Tx̂;2×m2×(m3−1))2m2×2m2 ]2(m3−1)m2×2(m3−1)m2

◦ (E2(m3−2)m2 ⊗ ((T
(r)
x̂;2×m2×2)

(c)
;i2

)2m2×2m2 )2(m3−1)m2×2(m3−1)m2

Theorem 3.19. For any m2 ≥ 2, m3 ≥ 2 and 1 ≤ i1, i2 ≤ 22m2 ,

Cx̂;m3;m1+1,m2;i1i2 = [tx̂;2×m2×2;i1iCx̂;m3;m1m2;ii2]2m2×2m2 ,(3.4.20)

where q ≤ i ≤ 22m2

Proof. By Remark 3.12 and Theorem 3.11,

Tz;(m1−1)×m2×2 = [Tz;2×m2×2;i1 ◦ Tz;(m1−2)×m2×2],

where 1 ≤ i1 ≤ 22m2 . Therefore, by

Cx̂;m3;(m1+1)m2;i1i2

= [(Tz;2×m2×2) ◦ Tz;(m1−1)×m2×2] ◦ [E2(m1−3)m2 ⊗ (T
(r)
z;2×m2×2)

(c)
;i2

]

= [tx̂;2×m2×2;i1i(Tz;2×m2×2;i ◦ Tz;(m1−2)×m2×2)]2m2×2m2

◦[E2m2 ⊗ (E2(m1−4)m2 ⊗ (T
(r)
z;2×m2×2)

(c)
;i2

)]

= [tx̂;2×m2×2;i1iCx̂;m3;m1m2;i1i2 ]2m2×2m2

where 1 ≤ i ≤ 22m2 . The proof is complete.
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Notably, (3.4.20) implies Cx̂;m3;m1m2;ij is

tx̂;2×m2×2;i1i2tx̂;2×m2×2;i2i3 · · · tx̂;2×m2×2;im1 im1+1

with i1 = i and im+1 = j. Cx̂;m3;m1m2;ij consist of all paths of length m1 +
1 starting from i and ending at j. Indeed, the entries of Cx̂;m3;m1m2 and
Tz;(m1+1)×m2×2 are the same. However, the arrangements are different.

In (3.4.3) substituting m3 for m3 + 1 and using (3.3.17), A
(k)
x̂;m1,m2,m3+1;α

could be represented by

Ax̂;2×m2×(m3+1);β1β2
Ax̂;2×m2×(m3+1);β2β3

· · ·Ax̂;2×m2×(m3+1);βm1βm1+1

=

m1∏

j=1

[ax̂;2×m2×2;αj α̂Ax̂;2×m2×m3;β̂1β̂2
]2m2×2m2 ,(3.4.21)

where 1 ≤ β̂1, β̂2 ≤ 2m2 and αj = α([βj, βj+1]) and α̂ = α(β̂1, β̂2) for 1 ≤ j ≤
m1.

After m1 matrix multiplications are executed in (3.4.21),

A
(k)
x̂;m1,m2,m3+1;α1

= [A
(k)
x̂;m1,m2,m3+1;α1;α2

]2m2×2m2 ,(3.4.22)

where 1 ≤ α2 ≤ 22m2 and A
(k)
x̂;m1,m2,m3+1;α1;α2

could be represented by

2m2(m1−1)∑

l=1

K(x̂, m1m2; α1α2; k, l)A
(l)
x̂;m1,m2,m3;α2

(3.4.23)

which is a linear combination of A
(l)
x̂;m1,m2,m3;α2

with the coefficients K(x̂, m1m2; α1α2; k, l)
which are products of ax̂;2×m2×2;αj α̂, 1 ≤ j ≤ m1. K(x̂, m1m2; α1α2; k, l) must
be studied in more details. Note that

Am1

x̂;2×m2×(m3+1) = [Ax̂;m1,m2,m3+1;α1 ]2m2×2m2(3.4.24)

where 1 ≤ α1 ≤ 22m2 ,

Ax̂;m1,m2,m3+1;α1 =

2m2(m1−1)∑

k=1

A
(k)
x̂;m1,m2,m3+1;α1

(3.4.25)

and

2m2(m1−1)∑

k=1

A
(k)
x̂;m1,m2,(m3+1);α1

= [

2m2(m1−1)∑

k=1

A
(k)
x̂;m1,m2,(m3+1);α1;α2

]2m2×2m2 ,(3.4.26)
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where 1 ≤ α2 ≤ 22m2 . Now, Xx̂;m1,m2,m3+1;α1;α2 is defined as

Xx̂;m1+1,m2,m3+1;α1;α2 = (A
(k)
x̂;m1+1,m2,m3+1;α1;α2

)t.(3.4.27)

And from (3.4.23) and (3.4.27),

Xx̂;m1,m2,m3+1;α1;α2 = K(x̂, m1m2; α1α2)Xx̂;m1,m2,m3+1;α2(3.4.28)

where

K(x̂, m1m2; α1α2) = (k(x̂, m1m2; α1α2; k, l)),(3.4.29)

1 ≤ k, l ≤ 2m2(m1−1) is a 2m2(m1−1) × 2m2(m1−1) matrix. Now

K(x̂, m1m2; α1α2) = Sx̂;m3;m1m2;α1α2(3.4.30)

must be shown as follows.

Theorem 3.20. For any m1 ≥ 2, m2 ≥ 2 and m3 ≥ 2, let Sx̂;m3;m1m2;α1α2 be
given as in (3.4.18). Then,

Xx̂;m1,m2,m3+1;α1;α2 = Sx̂;m3;m1m2;α1α2Xx̂;m1,m2,m3;α2 ,(3.4.31)

or equivalently, the recursive formula

A
(k)
x̂;m1,m2,(m3+1);α1

= [

2m2(m1−1)∑

l=1

(Sx̂;m3;m1m2;α1α2)klA
(l)
x̂;m1;m2,m3;α2

]2m2×2m2 ,(3.4.32)

where 1 ≤ α2 ≤ 22m2 . Moreover, for m3 = 1,

A
(k)
x̂;m1,m2,2;α1

= [

2m2(m1−1)∑

l=1

(Sx̂;m3;m1m2;α1α2)kl]2m2×2m2 ,(3.4.33)

where 1 ≤ α2 ≤ 22m2 for any 1 ≤ k ≤ 2m2(m1−1) and α1 ∈ {1, 2, . . . , 22m2}.

Proof. From (3.4.22), we can represent Ax̂;m1,m2,(m3+1);α1lα2
as the following
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patterns

α11 α12 α1m2

k1 k2
km2

km2(m1−2)+1 km2(m1−2)+2 km2(m1−1)

α1(m2+1) α1(m2+1) α1(2m2)

α21 α22 α2m2

α2(m2+1) α2(m2+2) α2(2m2)

××

×××

×××

×××

×××

×××

××

×××

×

×

×

×

××

×

×

××

· · ·

· · ·

· · ·

· · ·· · ·· · ·

· · ·

· · ·

· · ·

· · ·

...

...

m + 1 layers

(3.4.34)

and A
x̂;m1,m2,m3;α

(ℓ)
2

as the following patterns

α21 α22 α2m2

ℓ1 ℓ2
ℓm2

ℓm2(m1−2)+1 ℓm2(m1−2)+2 ℓm2(m1−1)

α2(m2+1) α2(m2+2) α2(2m2)

×××

×××

×××

××

××××

×

×

×

××

· · ·

· · ·

· · ·· · ·· · · · · ·

· · ·

· · ·

...

...
m layers

.(3.4.35)

By Definition 3.17, we get S
(r)
x̂;m3;m1m2;α1;α2

represent the following pattern

α11 α12 α1m2

k1 k2 km2

km2(m1−2)+1 km2(m1−2)+2
km2(m1−1)

α1(m2+1) α1(m2+1) α1(2m2)

α21 α22 α2m2

ℓ1 ℓ2 ℓm2

ℓm2(m1−2)+1ℓm2(m1−2)+2
ℓm2(m1−1)

α2(m2+1) α2(m2+2) α2(2m2)

· · ·

· · ·

· · ·· · ·· · ·

· · ·

· · ·

· · ·· · ·· · · · · ·

· · ·

· · ·

· · ·

· · ·

· · ·

.(3.4.36)

Therefore, (3.4.32) follows from (3.4.34), (3.4.35) and (3.4.36). And by
(3.4.28), (3.4.31) follows.

Next, (3.4.33) follows easily from (3.4.34) and (3.4.36).

For any positive integer p ≥ 2, applying Theorem 3.20 p times permits
the elementary patterns of Am1

x̂;2×m2×(m3+p) to be expressed as the product of
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a sequence of Sx̂;m3;m1m2;αiαi+1
and the elementary patterns in Am1

x̂;2×m2×m3
.

The elementary pattern in A
m1

x̂;2×m2×(m3+p) is first studied. For any p ≥ 2 and
1 ≤ q ≤ p − 1, define

A
(k)
x̂;(m1+1),m2,m3+p;α1;α2;...;αq

(3.4.37)

= [A
(k)
x̂;(m1+1),m2,m3+p;α1;α2;...;αq;αq+1

]2m2×2m2 ,

where 1 ≤ αq+1 ≤ 22m2 . Then A
(k)
x̂;m1,m2,m3+p;α1;α2;...;αp

could be represented as

2m2(m1−1)∑

l1=1

2m2(m1−1)∑

l2=1

· · ·
2m2(m1−1)∑

lp=1

(

p∏

i=1

K(m3; αi−1, αi; li−1, li))A
(lp)
x̂;m1;m2;m3;αp

(3.4.38)

where α0 = α and l0 = k can be easily verified.

Therefore, for any p ≥ 1 a generalization for (3.4.24) can be found for
Am1

x̂;2×m2×(m3+p) as a (2m
2 )p+1 × (2m

2 )p+1 matrix

A
m1

x̂;2×m2×(m3+p) = [Ax̂;m1,m2,(m3+p);α1;α2;...;αp
],(3.4.39)

where

A
(k)
x̂;m1,m2,(m3+p);α1;α2;...;αp

=
22m2∑

k=1

A
(k)
x̂;(m1+1),m2,m3;α1;α2;...;αp

.(3.4.40)

In particular, if α1, α2, . . . , αp ∈ {2m2(i−1)+i|1 ≤ i ≤ 2m2} then Ax̂;m1,m2,(m3+p);α1;α2;...;αp

lies on the diagonal of A
m1

x̂;2×m2×(m3+p) in (3.4.41). Now, define

Xx̂;m1+1,m2,m3+p;α1;α2;...;αp
= (A

(k)
m1+1,m2,m3+p;α1;α2;...;αp

)t.

Therefore, Theorem 3.20 can be generalized to the following Theorem.

Theorem 3.21. For any m1 ≥ 2, m2 ≥ 2, m3 ≥ 2 and p ≥ 1, Xx̂;m1,m2,m3+p;α1;α2;...;αp

could be represented as

Sx̂;m3;m1m2;α1α2Sx̂;m3;m1m2;α2α3 · · ·Sx̂;m3;m1m2;αp−1αp
Xx̂;m1,m2,m3;αp

(3.4.41)

where 1 ≤ αi ≤ 22m2 and 1 ≤ i ≤ p.
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Proof. From (3.4.38), (3.4.28) and (3.4.32),

Ax̂;m1,m2,m3+p;α1;α2;...;αp

=

2m2(m1−1)∑

ℓ1=1

2m2(m1−1)∑

ℓ2=1

· · ·
2m2(m1−1)∑

ℓp=1

(

p∏

i=1

K(x̂; m3; αi−1, αi; ℓi−1, ℓi))A
(ℓp)
x̂;m1,m2,m3;αp

=

2m2(m1−1)∑

ℓ1=1

2m2(m1−1)∑

ℓ2=1

· · ·
2m2(m1−1)∑

ℓp=1

(

p∏

i=1

(Sx̂;m3;m1m2;αi−1αi−2
)ℓi−1ℓi

)A
(ℓp)
x̂;m1,m2,m3;αp

=

2m2(m1−1)∑

ℓ1=1

2m2(m1−1)∑

ℓ2=1

· · ·
2m2(m1−1)∑

ℓp=1

((Sx̂;m3;m1m2;α0α1)ℓ0ℓ1(Sx̂;m3;m1m2;α1α2)ℓ1ℓ2

· · · (Sx̂;m3;m1m2;αp−1αp
)ℓp−1ℓp

)A
(ℓp)
x̂;m1,m2,m3;αp

=

2m2(m1−1)∑

ℓp=1

(Sx̂;m3;m1m2;α0α1Sx̂;m3;m1m2;α1α2 · · ·Sx̂;m3;m1m2;αp−1αp
)kℓp

A
(ℓp)
x̂;m1,m2,m3;αp

.

The proof is complete.

3.4.2 Lower Bound of Entropy

In this subsection, the connecting operator Cx̂;m3;m1m2 is employed to esti-
mate the lower bound of entropy and in particular, to verify the positivity
of entropy.

Definition 3.22. Let X = (X1, · · · , XM)t, where Xk are N × N matrices.
Define the summation of Xk by

|X| =
N∑

k=1

Xk.(3.4.42)

If M = [Mij ] is a M × M matrix, then

|MX| =

M∑

i=1

M∑

j=1

MijXj(3.4.43)

Note that, (3.4.42) implies

|Xx̂;m1,m2,m3;α| =

2(m1−1)m2∑

k=1

A
(k)
x̂;m1,m2,m3;α = Ax̂;m1,m2,m3;α.(3.4.44)

As usual, the set of all matrices with the same order can be partially ordered.



114 Pattern Generation Problems

Definition 3.23. Let M = [Mij ] and N = [Nij ] be two M × M matrices,
M ≥ N if Mij ≥ Nij for all 1 ≤ i, j ≤ M .

Notably, if A2 ≥ A′
2 then An ≥ A′

n for all n ≥ 2. Therefore, h(A2) ≥
h(A′

2). Hence, the spatial entropy as a function of A2 is monotonic with
respect to the partial order ≥.

Definition 3.24. A P + 1 multiple index

αp ≡ (α1α2 · · ·αpαP+1)(3.4.45)

is called a periodic cycle if

αP+1 = α1.(3.4.46)

It is called diagonal cycle if (3.4.46) holds and

αi ∈ {2m2(i−1)+i|1≤i≤22m2}(3.4.47)

for each 1 ≤ i ≤ P + 1. For a diagonal cycle (3.4.45)

ᾱP = α1; α2; · · · ; αP(3.4.48)

and

ᾱP
n = ᾱP ; ᾱP ; · · · ; ᾱP . (n-times)

First, prove the following Lemma.

Lemma 3.25. Let m1 ≥ 2, m2 ≥ 2, P ≥ 1, αP be a diagonal cycle. Then,
for any m3 ≥ 1,

ρ(Am1

x̂;2×m2×(m3P+2))(3.4.49)

≥ ρ(|(Sx̂;m3;m1m2;α1α2Sx̂;m3;m1m2;α2α3 · · ·Sx̂;m3;m1m2;αP αP+1
)m3Xx̂;m1,m2,2;α1 |).

Proof. Since αP is a periodic cycle, Theorem 3.21 implies

Xx̂;m1,m2,m3P+2;ᾱP
m1(3.4.50)

= (Sx̂;m3;m1m2;α1α2Sx̂;m3;m1m2;α2α3 · · ·Sx̂;m3;m1m2;αP αP+1
)nXx̂;m1,m2,2;α1 .(3.4.51)

Furthermore αP is diagonal and |Xx̂;m1,m2,m3P+2;ᾱP
m1 | = Ax̂;m1,m2,m3P+2;ᾱP

m1

lies in the diagonal part of (3.4.41) with m3 + P = m3P + 2, therefore

ρ(Am1

x̂;m1,m2,m3P+2) ≥ ρ(|Xx̂;m1,m2,m3P+2;ᾱP
m1 |).(3.4.52)

Therefore, (3.4.49) follows from (3.4.50) and (3.4.52). The proof is complete.
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The following Lemma is valuable in studying maximum eigenvalue of
(3.4.52).

Lemma 3.26. For any m1 ≥ 2, m2 ≥ 2, 1 ≤ k ≤ 2(m1−1)m2 and α1 ∈
{(i − 1)2m2 + i|1 ≤ i ≤ 2m2}, if

tr(A
(k)
x̂;m1,m2,2;α) = 0,(3.4.53)

then for all 1 ≤ ℓ ≤ 2(m1−1)m2 ,

(Sx̂;m3;m1m2;α1α2)kℓ = 0,(3.4.54)

for all α2 ∈ {(i − 1)2m2 + i|1 ≤ i ≤ 2m2}, i.e., the k-th rows of matrices
Sx̂;m3;m1m2;α1α2 are zeros. Furthermore, for any diagonal cycle αP , let U =
(u1u2 · · ·u2m2(m1−1)) be an eigenvector of Sx̂;m3;m1m2;α1α2Sx̂;m3;m1m2;α2α3 · · ·Sx̂;m3;m1m2;αP α1 ,

if uk 6= 0 for some 1 ≤ k ≤ 2(m1−1)m2 , then tr(A
(k)
x̂;m1,m2,2;α1

) > 0.

Proof. Since A
(k)
x̂;m1,m2,2;α1

can be expressed as (3.4.33). Therefore, tr(A
(k)
x̂;m1,m2,2;α1

) =

0 if and only if (3.4.54) holds for all 1 ≤ ℓ ≤ 2(m1−1)m2 . The second part of
the Lemma follows easily from the first part. The proof is complete.

By Lemma 3.25 and Lemma 3.26, the lower bound of entropy can be
obtained as follows.

Theorem 3.27. Let α1α2 · · ·αP α1 be a diagonal cycle. Then for any m1 ≥ 2,
m2 ≥ 2,

h(Ax;2×2×2)(3.4.55)

≥ 1

m1m2P
log ρ(Sx̂;m3;m1m2;α1α2Sx̂;m3;m1m2;α2α3 · · ·Sx̂;m3;m1m2;αP α1).

In particular, if a diagonal cycle α1α2 · · ·αP α1 exists and m1 ≥ 2, m2 ≥ 2
such that ρ(Sx̂;m3;m1m2;α1α2Sx̂;m3;m1m2;α2α3 · · ·Sx̂;m3;m1m2;αP α1) > 1, then h(Ax;2×2×2) >

0.

Proof. First, by the similar method in the proof of Lemma 2.10 and Lemma
2.11 and Theorem 2.12 in [5] we have

lim sup
m3→∞

1

m3
(log ρ(|(Sx̂;m3;m1m2;α1α2Sx̂;m3;m1m2;α2α3 · · ·Sx̂;m3;m1m2;αP α1)

nXx̂;m1,m2,2;α1|))

= log ρ(Sx̂;m3;m1m2;α1α2Sx̂;m3;m1m2;α2α3 · · ·Sx̂;m3;m1m2;αP α1).(3.4.56)

Now, show that

h(Ax;2×2×2) ≥ 1

m1m2P
lim sup
m3→∞

1

m3

(log ρ(|(Sx̂;m3;m1m2;α1α2Sx̂;m3;m1m2;α2α3 · · ·

Sx̂;m3;m1m2;αP α1)
nXx̂;m1,m2,2;α1 |))
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Indeed, from (3.3.18) and (3.4.49),

h(Ax;2×2×2) = lim
m2m3→∞

1

(m3P + 2)m2
log ρ(Ax̂;2×m2×(m3P+2))

= lim
m2m3→∞

1

m1(m3P + 2)m2
log ρ(Am1

x̂;2×m2×(m3P+2))

≥ 1

m1m2P
lim sup
m3→∞

1

m3
(log ρ(|(Sx̂;m3;m1m2;α1α2Sx̂;m3;m1m2;α2α3 · · ·

Sx̂;m3;m1m2;αP α1)
nXx̂;m1,m2,2;α1 |)).

And by (3.4.56), the proof is complete.

Example 3.28. Consider

Tx;2×2×2 = ⊗(G ⊗ E)2.

Then, it is easy to check that

Cx̂;m3;22;11 =




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 .

Therefore,

h(Tx;2×2×2) ≥
log 2

2
.

Moreover, in Proposition 3.15 it can be shown that h(Tx;2×2×2) = log g where

g = 1+
√

5
2

.
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