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Chapter 1

2-Dimensional Patterns Generation Problems

§ 1.1 Introduction

Many systems have been studied as models for spatial pattern formation in
biology, chemistry, engineering and physics. Lattices play important roles
in modeling underlying spatial structures. Notable examples include models
arising from biology[7, 8, 21, 22, 23, 33, 34, 35], chemical reaction and phase
transitions [4, 5, 11, 12, 13, 14, 24, 41, 43], image processing and pattern
recognition [11, 12, 15, 16, 17, 18, 19, 25, 40], as well as materials science[9,
20, 26]. Stationary patterns play a critical role in investigating of the long
time behavior of related dynamical systems. In general, multiple stationary
patterns may induce complicated phenomena of such systems.

In Lattice Dynamical Systems(LDS), especially Cellular Neural Networks
(CNN), the set of global stationary solutions (global patterns) has received
considerable attention in recent years (e.g.[1, 2, 6, 10, 27, 28, 29, 30, 31, 32,
36, 37]). When the mutual interaction between states of a system is local, the
state at each lattice point is influenced only by its finitely many neighborhood
states. The admissible (or allowable ) local patterns are introduced and
defined on a certain finite lattice. The admissible global patterns on the entire
lattice space are then glued together from those admissible local patterns.
More precisely, let S be a finite set of p elements (symbols, colors or letters
of an alphabet). Where Z¢ denotes the integer lattice on R%, and d > 1 is a
positive integer representing the lattice dimension. Then, function U : Z¢ —
S is called a global pattern. For each o € Z¢, we write U(a) as u,. The set
of all patterns U : Z¢ — S is denoted by

d — qz¢
¥, =87,
ie., Eg is the set of all patterns with p different colors in d-dimensional

lattice. As for local patterns, i.e., functions defined on (finite) sublattices,
for a given d-tuple N = (N1, No, -+, Ny) of positive integers, let

Zy = {(a1, a9, ,aq) 1 1 <o <N, 1 <k < d}
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2 Pattern Generation Problems

be an Ny X Ny x --- Ny finite rectangular lattice. Denoted by N > N if
N > N for all 1 < k < d. The set of all local patterns defined on Zy is
denoted by

Yv=Xn,={Ulz, :U€ Zg}.

Under many circumstances, only a(proper) subset B of ¥y is admissible
(allowable or feasible). In this case, local patterns in B are called basic
patterns and B is called the basic set. In a one dimensional case, S consists
of letters of an alphabet, and B is also called a set of allowable words of
length N.

Consider a fixed finite lattice Z and a given basic set B C Y. For
larger finite lattice Zg O Zy, the set of all local patterns on Zg which can
be generated by B is denoted as ¥.5(B). Indeed, ¥ 5(B) can be characterized
by

Yi(B) ={ UeXg:Uyn="Vy for any a € Z* with Zosn C Zy
and some Vy € B},

where
a+N={(a1+ b, a5+ Ba): (Br,---,Ba) € N},

and
Uatn = VN means uqayp = vg for each B € Zy.

Similarly, the set of all global patterns which can be generated by B is denoted
by

S(B) ={U € X : Usyn = Vi for any o € Z% with some Vi € B}.
The following questions arise :

(1) Can we find a systematic means of constructing ¥ 5(B) from B
for Z5 D Zn7?

(2) What is the complexity (or spatial entropy) of {} 5(B)}z-y ?

The spatial entropy h(B) of ¥(B) is defined as follows :
Let

(1.1.1) ['5(B) = card(X5(B)),

the number of distinct patterns in ¥ 5 (B). The spatial entropy h(B) is defined
as

1
(112) (B) = Jim ——loe 5 (8)
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where N = (Tv},f\f;, ...,]f\\f;) be a d-tuple positive integers, which is well-
defined and exists (e.g. [13]). The spatial entropy, which is an analogue to
topological entropy in dynamical system, has been used to measure a kind
of complexity in LDS (e.g. [13], [42] ).

In a one dimensional case, the above two questions can be answered by
using transition matrix. Indeed, for a given basic set B, we can associate the
transition matrix T(B) to B. Then the spatial entropy h(B) = log A\, where
A is the largest eigenvalue of T(B) (e.g. [29, 41]). On the other hand, for
higher dimensional cases, constructing ¥ 5 (B) systematically and computing

I'5(B) effectively for a large N are extremely difficult.

In the two dimensional case, Chow et al. [13] estimated lower bounds
of the spatial entropy for some problems in LDS. Later, using a ”building
block” technique, Juang and Lin [29] studied the patterns generation and
obtained lower bounds of the spatial entropy for CNN with square-cross or
diagonal-cross templates. For CNN with general templates, Hsu et al [27] in-
vestigated the generation of admissible local patterns and obtained the basic
set for any parameter, i.e., the first step in studying the patterns generation
problem. Meanwhile, given a set of symbols S and a pair consisting of a hori-

zontal transition matrix H and a vertical transition matrix V, Juang et al [30]

defined m-th order transition matrices TI({m& and TI({m& for each m > 1 and, in

doing so, obtained the recursion formulas for both T' ;Im& and Tjgm‘z Further-

more, they proved that TI({m& and TI({m& have the same maximum eigenvalue
Am and spatial entropy h(H,V) = lim log Am

m—00

. For a certain class of H,V, the

recursion formulas for Tém& and Tém& yield recursion formulas for A,, explic-
itly and the exact entropy. On the other hand, for the patterns generation
problem Lin and Yang [37] worked on the 3-cell L-shaped lattice, i.e., N=
H. They developed an algorithm to investigate how patterns are generated
on larger lattices from smaller one. Their algorithm treated all patterns in
¥ 5(B) as entries and arranged them in a ”counting matrix” Mg (B). A good
arrangement of My(B) implies an easier extension to Mz(B) for a larger

lattice N D N and effective counting of the number of elements in ¥ ~(B).
Upper and lower bounds of spatial entropy were also obtained. Next, there
are some relations with matrix shift [13], that details will appear in section
1.3.4.

Motivated by the counting matrix My (B) of [37] and the recursion formu-
las for transition matrices in [30], this work introduces the ”ordering matrix”
X, for Yopyor to study the patterns generation and obtain recursion formu-
las for X,, for Yosxne where ¢ > 1 is a fixed positive integer and n > 2.
The recursion formulas for X,, imply the recursion formula for the associated
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transition matrices T,,(B) of Xosxne(B), i.e., a generalization of the recursion
formulas in [30]. Notably, a different ordering matrix )22 for Yopxor induces
different recursion formulas of X,, for Ygpxne and ’i‘vn(B) Among them, X,
defined in (1.2.9) yields a simple recursion formula (1.3.16) and rewriting
rule (1.3.14), which enabling us to compute the maximum eigenvalue of T,
effectively. The computations or estimates of ), are interesting problems in
linear algebra and numerical linear algebra. Owing to the similarity prop-
erty of (1.3.16) or (1.3.14) of transition matrices {T,,}>,, we show that for
a certain class of B, \, satisfies certain recursion relations and h(B) can be
computed explicitly.

In d > 3, the structure of ordering matrix and transition matrices has
been explored, and it can be found in [3].

The rest of this paper is organized as follows. Section 1.2 describes a
two dimensional case by thoroughly investigating Y52 and introducing the
ordering matrix Xy of patterns in Ysy.5. The ordering matrix X,, on Yoy,
is then constructed from X, recursively. Finally, section 1.3 derives higher
order transition matrices T, from T and computes A, explicitly for a certain
type of Ts.

§ 1.2 Two Dimensional Patterns

This section describes two dimensional patterns generation. For clarity, we
begin by the studying two symbols, i.e., S = {0,1}. On a fixed finite lattice
Ziy xmy, We first give a ordering X = Xy xmy O0 Zin, xmy DY

(121) X((Oél, 042)) = mg(oq - 1) + Qo s
ie.,
™o 2m2 mime
(1.2.2) : : : :
1 |mg+1 (mp — 1)mg + 1

The ordering x of (1.2.1) on Z,,, xm, can now be passed to X, xm, - Indeed,
for each U = (Uay ay) € Xy xmy, define

X(U) = Xmixma (U>

(1.2.3) my e
= 1+ Z Z ualazgmz(mrm)—k(mz—az).

ar1=1az=1

Obviously, there is an one-to-one correspondence between local patterns in
Yy xm, and positive integers in the set Nomm, = {k € N : 1 < k <
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2mim21 - where N is the set of positive integers. Therefore, U is referred
to herein as the y(U)-th element in Y, «m,,. By identifying the pictorial
patterns by numbers y(U), it becomes highly effective in proving theorems
since computations can now be performed on x(U). In a two dimensional
case, we will keep the ordering (1.2.1)~ (1.2.3) x on Z,, xm, and X, xmss
respectively.

1.2.1 Ordering Matrices

For 1 x n pattern U = (ug),1 < k < nin ¥y.,, as in (1.2.3), U is assigned
the number

(1.2.4) i=x(U) =1+ w2,
k=1

As denoted by the 1 x n column pattern z,,;,

Un, Up,
(1.2.5) Tpy = | or
Uy Uy

In particular, when n = 2, as denoted by z; = x4,
=1+ 2u1 -+ Uy

and

(1.2.6) x; = { 12 } or |2
Uy (2!

A 2 x 2 pattern U = (ua,q,) can now be obtained by a horizontal direct sum
of two 1 x 2 patterns, i.e.,

Tivia = Ti B Xy,

(1.2.7)
|

U2 U2 Uyg | U2
or
Uy U2 Uyy | U21

where

(1.2.8) i =14 2upy + U, 1< k<2
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Therefore, the complete set of all 16(= 22%2) 2 x 2 patterns in Yy can be
listed by a 4 x 4 matrix Xy = [z;,;,] with 2 X 2 pattern x;,;, as its entries in

o fof 1) [1
oj1, 0|0

0] 0lo 0[1
0] 0/0 0/0 01 0/1
(1] 1]0 1)1 1]0 1)1

(1.2.9) 0 0/o 0/o 01 0/1
0] 0lo 0[1 0lo 0[1
1] 1/0 1]0 11 1)1
(1] 1]o0 1)1 1]0 1)1
1] 1/0 1]o0 11 11

It is easy to verify that

(1.2.10) X(2i,4,) = 4(iy — 1) + ia,

i.e, we are counting local patterns in .5 by going through each row succes-
sively in Table (1.2.9). Correspondingly, X, can be referred to as an ordering
matrix for Xo.o. Similarly, a 2 x 2 pattern can also be viewed as a vertical
direct sum of two 2 x 1 patterns, i.e,

(1211) Yjrjo = Y5 D Yias

where
Y5, = [ Uy U } or )

and

(1.2.12) ji =1+ 2uy + ua,
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1 <1<2 A4x4matrix Yo = [y;,;,] can also be obtained for ¥a,5. i.e.,
we have

olo] [o[1) [io] [1]]
oo oo loo [0
(1.2.13) ot o1 lo1 oo
aloll ol To o 1bo
A ey B A

The relation between X, and Yy must be explored. Indeed, from (1.2.12),
ug; can be solved in terms of j;, i.e., we have

=1
(1.2.14) uy = 2 5]
and

. i — 1
(1.2.15) Uy :]l—1—2[912 1,

where [ ] is the Gauss symbol, i.e., [r] is the largest integer which is equal
to or less than r. From (1.2.8), (1.2.12), (1.2.14) and (1.2.15), we have the
following relations between indices i1, 75 and 7y, js.

2 .
. e — 1 o
(1.2.16) =1+ 512,
k=1
= ir—1
(1.2.17) =1+ {ix—1-2 [kT] } 22k,
k=1
and
2 j 1
. I~ 2—1
(1.2.18) =1+ (=512,
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2 .
. Z . Ji—1 21
(1219) 19 = 1+ — { J— 1-2 [T] } 2 .

From (1.2.16) and (1.2.17), (1.2.9) or X can also be represented by y;,;, as

Y Y2 Y21 Y22
(1.2.20) X, = | Y18 Y1a Y23 U
Y31 Y2 Yau Ya2
Y3z Y34 Y43 Yaa

In (1.2.20), the indices jijo are arranged by two Z-maps successively, as

1 — 2

(1.2.21) /
3 — 4

i.e., the path from 1 to 4 in (1.2.21) is Z shaped and is then called a Z-map.
More precisely, X5 can be decomposed by

You Yoo
1.2.22 Xy = ' '
( ) 2 |i }/2;3 }/2;4 :|
and

Ykl Yk2
1.2.23 Yo = .
( ) Ak [ Yk3 Yk ]

Where, X, is arranged by a Z-map (Ys,) in (1.2.22) and each Ya, is also
arranged by a Z-map (yy;) in (1.2.23). Therefore, the indices of y in (1.2.20)
consist of two Z-maps.

The expression (1.2.20) of all local patterns in g2 by y can be extended
to all patterns in Yy, for any n > 3. Indeed, a local pattern U in Ys, can
be viewed as the horizontal direct sum of two 1 x n local patterns, i.e., U
and Us, and also the vertical direct sums of n many 2 x 1 local patterns. As
in (1.2.9), all patterns in Y., can be arranged by the ordering matrix

(1.2.24) X = [ Znsirir |

a 2" x 2" matrix with entry ,.,i, = Zniy B Ty, where x(Uy) = 7, and
X(Us3) =iy as in (1.2.4) and (1.2.5), 1 < 43,45 < 2". On the other hand, for
two 2 x 2 patterns y;,;, and y;,,,, we can attach them together to become a
2 x 3 pattern y;, j,;,, since the second row in y;, j, and the first row of y;,j,
are identical, i.e.,
Yijess = Yingz D Yiajs
(1.2.25)
= Yj D Yj D Yjs,
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Herein, a wedge direct sum @ is used for 2 x 2 patterns whenever they can
be attached together. In this way, a 2 x n pattern y;,...;, is obtained from
n — 1 many 2 X 2 patterns y;, o, Yjoiss ** s Yjn_1jn DY

A

Yirdn = Yjnje D Yjnjs D D Yju_ijn
(1.2.26)
= yjl@yjz@'”@yjm
where 1 < 7, <4, and 1 < k <n. Now, X,, in y expression can be obtained

as follows.

Theorem 1.1. For any n > 2, Yoy, = {yj,...j, }, Where y;,...;, is given in
(1.2.26). Furthermore, the ordering matrix X,, can be decomposed by n
Z-maps successively as

_ Yn;l Yn;2
(1.2.27) X, — { g ] |
Yo Y-'...'2:|
1.2.28 Y, i = nig1 gk nig1 gk 7
( ) I dk |: Yn;j1~~~jk3 Yn;j1~--jk4

for1<k<n-—2,and

(1229) Yn;jl...jn71 — |: Yjrgn-11l  Yj1jn_12 :| ‘

Yjijn13  Yjijn_14

Proof. From (1.2.12), (1.2.14) and (1.2.15), we have following table.

Ji 1 2 3 4

Uy 0 0 1 1

Ugy 0 1 0 1
Table 2.1

For any n > 2, by (1.2.12),(1.2.14) and (1.2.15), it is easy to generalize
(1.2.18) and (1.2.19) to

. . jl_l n—l
1.2. w1 =1 Z__ont
(1.2:30) +;[ ]



10 Pattern Generation Problems

and
(1.2.31) o =1+ i {n—-1- 2[E]}2"—l.
7 =1 2

From (1.2.30) and (1.2.31), we have
(1.2.32) i1 = it — 1+ [‘7%],
and

. . . jn—l—l -1
(1233) In41,2 = QZn;g -1+ {]n+1 —1- Q[T]}
Now, by induction on n the theorem follows from last two formulas and the
table 2.1. The proof is complete. ]

Remark 1.2. The ordering matrix on ¥,,x, can also be introduced accord-
ingly. However, when spatial entropy h(B) of X(B) is computed, only \,,
the largest eigenvalue of T, (B) must be known. Section 1.3 provides further
details.

1.2.2 More Symbols on Larger Lattices

The idea introduced in the last section can be generalized to more symbols
on Z,,xm, where m > 3. We first treat a case when m is even. Indeed,
assume that m = 2¢, ¢/ > 2 and S contains p elements. Now, we introduce
the ordering matrices Xy = [7;,;,] and Yo = [y;,;,] t0 Xasxos as follows. Let
q= pzz, Xy can be expressed by y;,,, i.€.,

Y; Y, Y,
Y Y. Y
(1.2.34) X, = q:+1 q:+2 ) :2q :
Yig-ar1 Yg-nere - Y axq
with
Yji  Yiig
(1.2.35) y, = | et
Yia-Da+1 0 Yina® | .,

Now, we can state recursion formulas for higher ordering matrix X,, =
[Znsivislgnxqn as follows and omit the proof for brevity.
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Theorem 1.3. Suppose we have p symbols, p > 2 and let ¢ = p 0> 2.
Forany n > 2, Yopxne = {yjle“‘jn}’ where Yjijo-in = Yirge DYjajs D@+  OYju_1jn>
1 < jr <¢*and 1 <k < n. Furthermore, the ordering matrix X,, can be
decomposed by n Z-maps successively as

Yn;l Yn;2 e Yn;q
Y. Y. e Y,
g+1 n;q+2 n;2q
(1.2.36) X, = . . .
Yn;(q—l)q+1 Yn;(q—l)q+2 T Yn;q2
Yo e =
Yn;jlv“'vjkvl Yn;jlv"'vjk72 e Yn;jlv"'vjkvq
(1.2.37) e v AR
n5J1, kg1 niJ1, 3 Jk,q+2 g1, Jky2q
Yn7]177Jk7(q_1)Q+1 anjlvvjk7(q_1)q+2 o Yn;j17"'7jk7q2
for1 <k<n-2,
Yoijignoy =
(1.2.38) Y, in—1,1 Y, in—1,2 Y gne1,g
o Yjr, gn-1,q+1 Yjr, Gn—1,q+2 U Y gn1,2q
Yjrogn1,(a=1g+1  Yjiogn1,(a=Dg+2 " Yjr,o jn_1,62

§ 1.3 Transition matrices

This section derives the transition matrices T,, for a given basic set B. For
simplicity, the study of two symbols & = {0,1} on 2 x 2 lattice Zoxo in
two dimensional lattice space Z? is of particular focus. The results can be
extended to general cases.

1.3.1 2 x 2 systems

Given a basic set B C Xayo, horizontal and vertical transition matrices Ho
and V5 can be defined by

(1.3.1) Hy = [hiyi,] and Va = [vj,5,],
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two 4 x 4 matrices with entries either 0 or 1 , according to following rules:

hilig = 1 Zf Tiyiq EB,
(1.3.2) { — 0 if wis€See-B

and

Vi, =1 iof Y. €8
1.3.3 J1j2 ’ J1j2 )
( ) { =0 Zf Yjrjo € Yoxo — B.

Obviously, hji, = vj,j,, where (i1,i2) and (ji,J2) are related according to
(1.2.16)~(1.2.19). Now, the transition matrix T for B can be defined by

T2 = TQ(B)

(1‘3‘4) V11 Uiz V21 V22
V13 Vig V23 Uy
V31 V32 V41 V42
V33 V34 V43 Uy

Define

(1.3.5) Vjigajn = Vjrga " Vajs """ Vjn_1jns

and
Ty = [V jijns

then the transition matrix T, for B defined on Zs,,, is a 2" x 2" matrix with
entries vj,...;,,, which are either 1 or 0, by substituting y;,...;, by vj,...;, in X,,,
see (1.2.27)~(1.2.29).

In the following, we give some interpretations for T,, one from an al-
gebraic perspective and the other from Lindenmayer system (for details see
Remark 1.5 ). For clarity, T3 can be written in a complete form as

V1111 V11Vi2 Vi2U21 Vi12V22 V21V11  U21V12 V22U21  U22U22
V11V13  V11V14 U12VU23 Vi12V24 V21V13 VU21V14 U22V23 U22U24
V13VU31 V13V32 V14U41 V14U42 V23VU31 V23VU32 V24U41  U24V42
(1 .3.6) V13VU33 V13VU34 V14V43 UV14U4gq4 V23V33 V23VU34 V24V43 V24U
U31V11 U31V12 U32U21 U32V22 U41V11 U41V12 Vg2U21  UVg2U22
U31V13  U31V14 U32U23 U32V24 VUg1V13 U41V14 V4oVU23 Vg2V
V33VU31 U33V32 UsqUq1 U34V42 Uy3VU31l Vg3VU32  VgqU4q1  U4qaUg
V33VU33 U33VU3q4 U34V43 U34U4gq4 V43V33 V43U34 VgqUs3  UVgaUyy
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From an algebraic perspective, T3 can be defined through the classical
Kronecker product (or tensor product) ® and Hadamard product ®. Indeed,
for any two matrices A = (a;;) and B = (by), the Kronecker product of
A ® B is defined by

On the other hand, for any two n x n matrices
C = (Cij> and D = (dij)7

where ¢;; and d;; are numbers or matrices. Then, Hadamard product of
C ® D is defined by

(1.3.8) C oD = (¢ dy),

where the product ¢;; - d;; of ¢;; and d;; may be multiplication of numbers,
numbers and matrices or matrices whenever it is well-defined. For instance,
¢ij is number and d;; is matrix.

Denoted by
| T Ty
(1.3.9) Ty = [ T ]
where T}, is a 2 X 2 matrix with
Ukl Uk2
1.3.10 T, = )
( ) g [ Vg3 Uk4 }

Then, using Hadamard product, (1.3.6) can be written as

V11 V12 V21 Va2 T Ty, Ty T
V13 V14 V23 V24 T3 T, 15 Ty

1.3.11 Ty = © 5
( ) 3 V31 V32 Ugq1 V42 T Ty Tv T
U3z Usq Va3 Vag T5 Ty T3 Ty

and can also be written by Kronecker product with Hadamard product as

(1.3.12) Ty = (T2)4X4®|: “ ”@{% %] ]

where (T5)4x4 is interpreted as a 4 x 4 matrix given as in (1.3.4). Hereinafter,
(M)gxr is used as the k x k matrix; its entries may also be matrices.
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Furthermore, by (1.3.9) and (1.3.12), T3 can also be written as

JARON B T2®T2]

1.3.13 T; =
( ) K {T;),@Tg T, ® T,y

Now, from the perspective of Lindenmayer system, (1.3.13) can be interpreted
as a rewriting rule as follows:
To construct T3 from Ty, simply replace T}, in (1.3.9) by T, © T, i.e,

(SVARRITYE ]

1.3.14 T, T, ©Ty =
( ) e e [Uk3T3 Ve Ty

Now, T3 can be written as

ondy vy va Ty w1
vils vigTy vasT3 w41y
vl vdy vy T vl
v3sly 34Ty w4313 vasTy

(1.3.15) T, =

Since vy is either 0 or 1. The entries of T3 in (1.3.15) are T}, i.e, T} can be
taken as the "basic element” in constructing T,, ,n > 3. As demonstrated
later that(1.3.14) is an efficient means of constructing T,,;; from T,, for any
n > 2.

Now, by induction on n, the following properties of transition matrix T,
on Zsy, can be easily proven.

Theorem 1.4. Let Ty be a transition matrix given by (1.3.4). Then, for
higher order transition matrices T,, n > 3, we have the following three
equivalent expressions

(I) T,, can be decomposed into n successive 2 x 2matrices (or n-successive

Z-maps) as follows:
T — |iTn;1 Tn;2 :|

Tn;3 Tn;4

T .. . = Tn;jr"jkl Tn;jlmjk?
njr e T ?
Tn;j1~"jk3 Tn;j1~~jk4

for 1 <k <n-—2and
7 — | Ydaal Ujiegnoa2
WL In=1 T | gy Vi s ’
Jiin—13 Jign—14
Furthermore,

Vg1 Tn—11 VkaTh—1:2
1.3.16 T = : ' .
( ) i { UpsTn—1:3 Upalp—1.4 }
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Ty Ty
T2 - < T3 T4 ) )
T, = ( Ukl Ug2 ) ’
Vg3 Uka

T, can be obtained from T, _; by replacing T by T} ® T, according to
(1.3.14).

(II) Starting from

with

(111)

T T
t (o (B o (BB

where E,. is the 2% x 2F matrix with 1 as its entries.

Proof.

(I)The proof is simply replaced Y,,.j,..;, and y;,..;, by Tp.j,...j, and vj,..j,
in Theorem 2.1, respectively.

(IT) follow from (I) directly.

(III) follow from (I), we have

. Tn;l Tn;2
Tn N |i Tn;3 Tn;4 :| '

And by (1.3.16), we get following formula.

U11Tn;1 UlzTn;z U21Tn;1 U22Tn;2
U13Tn;3 Ul4Tn;4 U23Tn;3 U24Tn;4

T, =
U31Tn;1 U32Tn;2 U41Tn;1 U42Tn;2
U3sThs vsaThna vasThs vaaTha
T T
= (Tn_l)2n71><2n71 @ ( E2n72 ® ( T; Tz ) ) .
The proof is complete. ]

Remark 1.5. While studying the growth processes of plants, Lindenmayer,
e.g.[39], derived a developmental algorithm, i.e., a set of rules which describes
plant development in time. Thereafter, a system with a set of rewriting rules
was called Lindenmayer system or L-system. From Theorem 1.4(III), the
family of transition matrices {T),},>2 is a two-dimensional L-system with a
rewriting rule(1.3.16). Similar to many L-systems, our system T, also enjoys
the simplicity of recursion formulas and self-similarity.
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As for spatial entropy h(B), we have the following theorem.

Theorem 1.6. Given a basic set B C Y9, let A, be the largest eigenvalue of

the associated transition matrix T,, which is defined in Theorem 1.4. Then,
log A\,

(1.3.17) h(B) = lim —2

n—oo n

Proof. By the same arguments as in [13], the limit (1.1.2) is well-defined
and exists. From the construction of T,,, we observe that for m > 2,

Couxn(B) = 1<Z<2 (T )i
<z,g<2"

(1.3.18)
= HTp).
As in a one dimensional case, we have

m—1
lim w — log )\m
m

m—0o0

e.g. [42]. Therefore,

1 1—‘m n
M&::hmfgﬁ%@
— lim l( lim M
m

n—oo 1, m—oo

)

. log A\,
= lim )
n— o0 n

The proof is complete. [ ]

1.3.2 Computation of Maximum Eigenvalues and Spa-
tial Entropy

Given a transition matrix Ty, for any n > 2, the characteristic polyno-
mials |T,, — A| are of degree 2". In general, computing or estimating the
largest eigenvalue A, = A, (Ty) of |T,, — A| for a large n is relatively difficult.
However, in this section, we present a class of Ty in which A, (T2) can be

- A B |.
computed explicitly. Indeed, assume that Ty has the form of [ B A } in

(1.3.9), i.e.,

L . . a a9
(1.3.19) ﬂ—ﬂ—A—[%a},
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and

(1.3.20) I,=T3=B= boh ;
by b

where a, as, as, b, by and b3 are either 0 or 1.
We need the following lemma.

Lemma 1.7. Let A and B be non-negative and non-zero m X m matrices,

respectively, and « and 3 are positive numbers. The maximum eigenvalue of
[ A aB

8B A } is then the maximum eigenvalue of

A+ +/aBB.

Proof. Consider

A—- )\ aB
6B A—)\

‘ 0
For |[A — A| # 0, the last equation is equivalent to

‘A—)\ B

0 (A—)) —aBB(A—)\"'B ‘ =9,

11— apf((A=XN)""'B)*| =0.

Then, we have

|A+aBB—X=0 or |[A—+/aBB -\ =0.
Since A and B are non-negative and « and [ are positive, verifying that the
A aB } and A++/afB are equal is relatively

6B A
easy. The proof is complete. ]

maximum eigenvalue \ of {

Now, we can state our computation results for A\, (Ty) when T, satisfies
(1.3.19) and (1.3.20).

A B
B A

a Qas

Theorem 1.8. Assume that Ty = [ 0 a } and B =
3

b by
bs b
eigenvalue of

Janta=|

} where a,b, ag, as, by, b3 € {0,1}. For n > 2, let A\, be the largest

IT, — | = 0.
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Then
(1.3.21) An = Q1+ Bpon,

where «y, and (3, satisfy the following recursion relations:

(1.3.22) Qpp1 = aoy + bBy,

(1.3.23) Brr1 = (agay + baf) (azay + bsf),
for £ > 0, and

(1324) Qp = ﬁo =1.

Furthermore, the spatial entropy h(Ts) is equal to log&,, where &, is the
maximum root of the following polynomials Q(§):
(I) if 9 = a3 = ].,

Q)= 42— a)’+ (y* —40)(§ —a)?

(1.3.25)

—7?E% = 279(2b — an)§ — (2b — a)?,
where
(1.3.26) Y= bg + bg and § = bgbg.

(II) if Aoy = 0 and a2b3 + a3b2 = 1,
(1.3.27) Q&) =& —at® — 6 +ab —b.

Moreover, if asaz = 0 and asbs + agby = 0, then h(Ty) = 0.

Proof. Owing to the special structure of T, it is easy to verify that for any

k > 2, we have
Tk:{Ak Bk:|’

B, Ay
and
T _ Aks1 Brn
b Briy1 A |
here

(1.3.28) A1 =Ty ® A = {
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and

(1.3.29) By =T,0B= [ bAi baDy } :

bsBr DA
Ay = A and By = B. Now by Lemma 1.7,

[ Ths1 — Apg1| =0,
implies
(1.3.30) |Aps1 + Bri1 — A\pya] = 0.

Let
060:1 and 60:1

By induction on k, 1 < k < n, and using (1.3.28),(1.3.29),(1.3.30) and
Lemma 1.7, it is straight forward to derive

(1.3.31) |k Ap—kt1 + BeBr—ks1 — Ans1] =0,

with ay and fj satisfy (1.3.22) and (1.3.23). In particular,

(1.3.32) an = a1+ b0,
(1.3.33) Bn = {(azan_1+ b2fn_1)(azan_1 + bSﬁn—l)}%>
and

)\n—i-l = oy + /Gn

This proves the first part of the theorem.
The remainder of the proof, demonstrates that h(Ty) = log A\, where A, is
the maximum root of Q(\). From (1.3.33), we have

/62 = agagai_l + (a2b3 + a3b2)an—l/6n—l
(1.3.34)
+ bobsfa_ .

Now, in (1.3.34), we first solve «,,_; in terms of 3, and [3,, then substitute
a,_1 and «,, into (1.3.32) to obtain difference equations involving 3,11, 5,
and (,_1. There are two cases:

Case I. If ay = a3 = 1, then we have

(13.39) a1 = S+ (452 + (P — 49T,
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Substituting (1.3.35) into (1.3.32), yields

(402, + (72 — 46)32)2 = 7B + (20— a)Bus

(1.3.36) 1
a4 + (72 — 40) ).
Now, let
_ b
(1.3-37) g’ﬂ - 6n_1’

and after dividing (1.3.36) by ,_1, we have

(1.3.38) &, {462, + (72 — 40)}7 =1, + (2b — av) + a{4€2 + (7 — 46)} 3.

(1.3.38) can be written as the following iteration map:

(1.3.39) En1 = G1(&n),

where

(1.3.40) G1(6) = 5 {45 +219(6) + PO},

and

(1.3.41) 9() = (2b— a7)E™" + a{d + (72 — 40)¢ 722

We first observe the fixed point &, of G1(€), i.e., & = G(&,), is a root of Q(€).
Indeed, by letting &, = &,11 = &, in (1.3.38), we have

(€ — a)(4€2 + (¥* — 40))% = 7&. + (20— ay),

which gives us Q(&,.) = 0.
It can be proven that the maximum fixed point of G () or the maximum
root &, of Q(&) = 0 satisfies 1 < &, <2 and

(1.3.42) &n — & as n— 0.

Details are omitted here for brevity. By (1.3.21), (1.3.35) and (1.3.37), we
can also prove that

>\n+1
An

(1.3.43)

— & as n — oo.

Hence, h(T5) = log&,.
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Case II. If asaz = 0 and agbz + azby =1,
then, from (1.3.33), we have

(1.3.44) o1 = 3261 — 681

Again, substituting (1.3.44) into (1.3.32) and letting (1.3.37) lead to
(1.3.45) & 16n—all — 56, +ad —b=0,

ie.,

€n+1 = G2(§n)a

where
(1.3.46) Go(€) = {aé + 6 + (b— ad)e 1},

The maximum fixed point &, of (1.3.46) is the maximum root of Q(£) =0 in
(1.3.27). Tt can also be proven that (1.3.42) and (1.3.43) holds in this case.
Finally, if asas = 0 and asbs + asby = 0, then (,, are all equal for n > 1.
Hence, a, is at most linear growth in n, implying that h(Ty) = 0. The proof
is thus complete. [ ]

For completeness, we list all Ty which satisfy (1.3.19) and (1.3.20) and
have positive entropy h(Ts). The table is arranged based on the magnitude of
h(T3). The polynomial Q(.) in either (1.3.25) or (1.3.27) has been simplified
whenever possible.
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A B Q) A
1 1 1 1
(1) 11 11 A—2 2
(2) - H Hor“ (1)] N2 A— 1| (i)
11 10 (11 )
(3)() {0 1]07’[1 1 1 AM=A—1 g
11 10 ,
[0 1 (11
11 1 y
(4) 01 11 A — A% —1 (17)
1 0 11
11 01
0 1 0 0 (11
(5) [0 0]07’{1 0 11 AN —X—1 (141)
01 1 1 1 0 )
(6) [1 0 [O 1}07"[1 1} AM—X—1 (iv)

(i) A = 1.75488, (ii) A, = 1.46557, (iii) A, = 1.32472, (iv) A, = 1.22074

where, g = 1.61803, is the golden mean, a root of A2 — X — 1 = 0.

The recursion formulas for )\, are

Table 1.1
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(1) An =27,

(2) At = A+ A1),

(3) (@) Anrr=An+ (A = Ani1))7,
(B) Aus1 = Ao+ A,

(7) )\n—i-l = )\n + )\n—la

(4) Anst = A+ Qo1 (A — A1),
(5) At = AnBu1)? + B,
where (G,1 =X\, — Aq + -+ (=1)7,
(6) A1 = Ao+ (AnB-2)? — Baca.
Table 1.2
Remark 1.9.

(i) According to Table 1.2, for cases (1)~(4), A\,+1 depends only on two

preceding terms, A\, and \,_;. However, in (5) and (6), A,,1 depends on all

of its preceding terms Ay, -+, \,.

(ii) From Lemma 1.7 and Theorem 1.8, in addition to the maximum eigen-

value we can obtain a complete set of eigenvalues of T,, explicitly.

(iii) In Theorem 1.8, polynomial Q(¢) given in (1.3.25) or (1.3.27) is the lim-
1

iting equation for A;;. It is interesting to know is there any limiting equation
for general T,,.

Remark 1.10. Similar to the concept in Theorem 1.8, if Ty does not satisfy
(1.3.19) and (1.3.20), another special structure can allow us to obtain explicit
recursion formulas of A, and compute its spatial entropy h(T5) explicitly.

1.3.3 2¢ x 2¢ Systems

The results in last two subsections can be generalized to p-symbols on Zioyyoy.
Given a basic set B C Ygyy9,, horizontal and vertical transition matrices
Hy = [Riyiy] 2w a0d Vo = [0),5,]42xq2, Where ¢ = p° | can be defined according
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the rules (1.3.2) and (1.3.3) by replacing Yoyo with Yosy o, respectively. Then
the transition matrix Ty(B) for B can be defined by

R
V. V. R V4
(1.3.47) T, = Ty(B) = " e
V(q—l)q+1 V(q—l)q+2 T ‘/;12
where
Um,1 Um,2 T Um,q
Up, Upn, Upn,
(1.3.48) vV, — Loy a? el
Um,(g—1)g+1  VUm,(g—1)g+2 U, q2

1 < m < ¢* The higher order transition matrix T,, = [v},j,..;,] for B defined
on Zopxne is a ¢" X ¢" matrix, where v; j,..;, is given by (1.3.5) which are
either 1 or 0, by substituting y;,..;, by v;,..;, in X,,, see (1.2.36)~(1.2.38).
For completeness, we state the following theorem for T,, and omit the proof
for brevity.

Theorem 1.11. Let T be a transition matrix given by (1.3.47) and (1.3.48).
Then for higher order transition matrices T,,, n > 3, we have the following
three equivalent expressions

(I) T,, can be decomposed into n successive ¢ X ¢ matrices as follows:

Tn;l R Tn;q
Tn;q+l Tn;2q
Tn = . .
Toig-vg+1 - T
T";jly“‘ Ikl T”;jlv“' Jkq

T o Tn7]177Jk7q+1
gk .
T”;jl:"'ujk’(q_l)q'i'l
for 1 <k<n-—2and

Vg, dn—1,1
Ui, fin—1,q+1

T, =

g1 gn—1

Ui, yfin—1,(g—1)g+1

Tn;jh“' Jks29

n;J1, 7jk7q2

,l}j17... 7jn717q
Ujy e dn—1,2q

Vg1, n—1,q2
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Furthermore,
V1T n—1:1 N VA A
Uk,q-l—lTn—l;q—l—l T Uk,2an—1;2q
Tn;k = . .
U, (gDt In-1ig-1)g+1 ** VkgTno1g?
(IT) Starting from
Ty T,
Tyi1 o Ty,
Ty = . , A
Tig-1yg+1 -+ T
with
/Uk,l e Uk‘,q
Uk,q+1 T Uk2q
Tk = . . )
Uk,(g=1)g+1  * " Ukgq?

T, can be obtained from T,_; by replacing T} by T} ® Ty according

to
'Uk,lTl T Uk,qTq
Vg1 Ty41 T Uagla
Ty — T, Ty = ) i
Uk (g-1)g+1 L (g-1)g+1 -+ Upg2Tp

(111)
TTL - (Tn_1>qn71><qn71 @ (Eqn72 ® TQ)

For the spatial entropy h(), we have a similar result as in Theorem 1.6.

Theorem 1.12. Given a basic set B C X, xm,, let £ be the smallest integer
such that 2¢ > m; and 2¢ > my, and let B = Ygsx00(B). Suppose A, be the
largest eigenvalue of the associated transition matrix T,,, which is defined in

Theorem 1.11. Then

1 . logh,
h(B) = — lim —9°mt

B 62 n—oo n
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Proof. As in Theorem 1.6,
. logrméxnﬁ(g)
h(iB) = 1 —_
(B) mrlzr—l}oo ml x nt
L1 log# (T (B))

= — lim —( lim
€2 n—oo n(m—>oo m

)

)

11 logh!
=l —(lim ——
1 l log)\TL;Z
= — lim

€2 n—oo n

The proof is complete. [ ]

1.3.4 Relation with Matrix Shifts

Under many circumstances, we are given a pair of horizontal transition matrix
H = (hij)pxp and vertical transition matrix V' = (v;;)pxp, Where h;; and
v;; € {0,1}, e.g. [13, 29, 30, 32]. Now, the set of all admissible patterns
which can be generated by H and V on Z,,xm, and Z? are denoted by
Yoy xme (H; V) and X(H; V), respectively. Furthermore, 3, wm,(H; V') and
Y(H;V) can be characterized by
(1.3.49)

Yy xmy (H; V) ={U € Zyscmap * Puiay., = 1 and Vugugye, = 1

where €1 = (1,0), €o = (0, 1), o = (Oél,Oég), ﬁ = (61,52)

withl <oy <m;—1,1<a<myand 1 <[ <my 1< [y <my— 1}

and

S(H; V) ={U € 3} : huguay,, = 1 and vy, =1
for all o, 3 € Z?}.

In literature, X(H; V) is often called Matrix shift, Markov shift or subshift
of finite types, e.g. [13, 30, 32, 38|

As before, we are concerned about constructing 3,,, xm,(H; V). We first
show that the established theories can be applied to answer this question.
Indeed, we introduce S = {0,1,2,--- ,p—1}. On Zsys, consider local pattern
U = (Uayay) With ua,q, € S. Define the ordering matrices Xo = [, ]2 5p2
and Yo = (Y}, j,]p2xp2 for Xoyo. Now, the basic set B(H; V') determined by H
and V' can be expressed as
(1.3.51)

B(H; V) = {U = (uOCIOfZ) € Yoxa hU11U21hU12U2sz11U12UU21U22 = 1}'

(1.3.50)
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Therefore, the transition matrix Ty = Ty (H; V') can be expressed as Ty =[t}, j,]p2xp2
with t;,;, = 1 if and only if y,,;, € B(H;V), i.e., t;;, = 1 if and only if

(1.3.52) Py oy Prussuzs Vunyuss Vusruss = 1

where j; is related to w4, 4, according to (1.2.12) similarly.
Now, T,, = T,,(H;V) can be constructed recursively from To(H; V) by
Theorem 1.11. Then A, and spatial entropy h(H;V') can be studied by

Theorem 1.12. Tt is easy to verify T, (H;V) = TEZ)V, the transition matrix

obtained by Juang et al in [30]. Furthermore, T’ IEI" 2/ in [30] can also be obtained

by deleting the rows and columns formed by zeros in T, (H; V).

On the other hand, given a basic set B C Xoxa, (or Xoxa,), in general
there is no horizontal transition matrix H = (h;;),x, and vertical transition
matrix V' = (vj;)pxp such that B = B(H; V) given by (1.3.51). Indeed, the
number of subsets of Yoy ), is 27" and the number of B(H;V) is at most 22’
and 22° < 2¢" for any p > 2. However, as mentioned in p.468[38], one can
recode any shift of finite type to a matrix subshift.

Notably, the n-th order transition matrix T, (B) is a ¢" x ¢" matrix with
¢ = p" and the n-th order transition matrix T, (H(B);V(B))) generated by
To(H(B); V(B))) is am™ xm™ matrix. Consequently, if m = #1B is relatively
small compared with ¢ = p”°, we may study the eigenvalue problems of
T,.(H(B);V(B)). It is clear, small m generates less admissible patterns and
then smaller entropy. For B with positive entropy h(B) as in Table 3.1, #B
is much larger than ¢ = 2. Therefore, in general working on T,,(B) is better
than on T,,(H(B); V(B))).
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Chapter 2

Patterns Generation and Spatial Entropy in
Two-dimensional Lattice Models

§ 2.1 Introduction

Lattices are important in scientifically modelling underlying spatial struc-
tures. Investigations in this field have covered phase transition [11], [12], [34],
[35], [36], [37], [38], [45], [46], [47], [48], chemical reaction [7], [8], [24], biol-
ogy [9], [10], [21], [22], [23], [31], [32], [33] and image processing and pattern
recognition [16], [17], [1&], [19], [20], [25]. In the field of lattice dynamical
systems (LDS) and cellular neural networks (CNN), the complexity of the set
of all global patterns recently attracted substantial interest. In particular,
its spatial entropy has received considerable attention [1],[2], [3], [4], [5], [13],
[14], [15], [28], [29],[30], [39], [40], [41], [42], [43], [44].

The one dimensional spatial entropy h can be found from an associated
transition matrix T. The spatial entropy h equals log p(T), where p(T) is the
maximum eigenvalue of T.

In two-dimensional situations, higher transition matrices have been dis-
covered in [30] and developed systematically [1] by studying the patterns
generation problem.

This study extends our previous work [1]. For simplicity, two symbols on
2 x 2 lattice Zgyo are considered. A transition matrix in the horizontal (or
vertical) direction

aix a2 a1z Qa4
_ | @21 a22 Q23 G24
(2. 1. 1) Ay =
a31 32 33 aA34
Aq1 Q42 A43 Q44

which is linked to a set of admissible local patterns on Z,ys is considered,
where a;; € {0,1} for 1 < 4,5 < 4. The associated vertical (or horizontal)

33
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transition matrix By is given by

bll b12 b13 bl4
621 b22 b23 624
2.1.2 B, =
(2.1.2) I
b41 b42 b43 b44

Ay and By are connected to each other as follows.

bii big | bar b

biz b1 | bag boy Agq Agpo
2.1.3 Ay = = ’ ’ ,
(2.13) 2=\ Ty by (b b | | Aws As

bsz b3s | bag bus
and

a1y Qi2 | G21 Qa22

13 Q14 | Q23 Q24 By Bso
2.14 By = = ’ ’ .
( ) ? a31 32 | Q41 A42 {32;3 B2;4}

33 34 | @43 Q44

Notably if Ay represents the horizontal (or vertical) transition matrix then
B, represents the vertical (or horizontal) transition matrix. Results that hold
for Ay are also valid for B,. Therefore, for simplicity, only A, is presented
herein.

The recursive formulae for n-th order transition matrices A,, defined on
Zowr, Were obtained [1] as follows

bi1An1 bi2Ane barAna baAns
bisAns biaAns bazAns baApa

2.15 Ayl =
( ) i b31An;l b32An;2 b41An;1 b42An;2
b33An;3 b34An;4 b43An;3 b44An;4
whenever
. An;l An;2
(2.1.6) A, = {An;g An;J’

for n > 2, or equivalently,

B balAn;l ba2An;2
(2.1.7) At = { baszAnz baaAna } 7
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for a € {1,2,3,4}. The number of all admissible patterns defined on Z,, .,
which can be generated from A, is now defined by
(2.1.8)

Pin(A2) = [ATTY

= the summation of all entries in 2" x 2" matrix A™~1.

The spatial entropy h(As) is defined as

1 1
(2.1.9) h(Ag) = lim —logl, . (Ag) = lim — log |A™!|.
m,n—oo MMN m,n—o0 1MN
The existence of the limit (2.1.9) has been shown in [41], [15], [30]. When

h(Ay) > 0, the number of admissible patterns grows exponentially with the
lattice size m x n. In this situation, spatial chaos arises. When h(Ay) = 0,
pattern formation occurs.

To compute the double limit in (2.1.9), n > 2 can be fixed initially and
m allowed to tend to infinite [30] and [1]; then the Perron-Frobenius theorem
is applied;

1
(2.1.10) lim — log |[A”!| = log p(A,,),
m—oo M,

which implies

1
(2.1.11) h(As) = lim —log p(A,),
n—oo N,
where p(M) is the maximum eigenvalue of matrix M. A, is a 2" x 2" matrix,
so computing p(A,,) is usually quite difficult when n is larger. Moreover,
(2.1.11) does not produce any error estimation in the estimated sequence

- log p(A,,) and its limit h(Asy). This causes a serious problem in computing
the entropy. However, for a class of Ay, the recursive formulae for p(A,,) can
be discovered, along with a limiting equation to p* = exp(h(Ayz)), as in [4].

This study takes a different approach to resolve these difficulties. Previ-
ously, the double limit (2.1.9) was initially examined by taking the m-limit
firstly as in (2.1.10). Now, for each fixed m > 2, the n-limit in (2.1.9) is
studied. Therefore, the limit

1
(2.1.12) lim — log [A™!
n—oo M,
is considered. Write

(2113) Am — |i Am,n;l Am,ﬂ;Q :| ]
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The investigation of (2.1.12) would be simpler if a recursive formula such as
(2.1.7) could be found for A, ... The first task in this study is to solve this
problem. For matrix multiplication, the indices of A,,.,, o € {1,2,3,4} are
conveniently expressed as

An'll An'12
2.1.14 A, = ’ N E
( ) [ An;21 An;22
Then
2m71
(2115) Am,n;oc = Z Agr]f,)n;a>
k=1
where
(2.1.16) AR e = AniisAniags = Animims
(2.1.17) k=1+> 2""(ji—1),
i=2
and
(2.1.18) a=2(j1 = 1) + jmi1-

AP, in (2.1.16) is called an elementary pattern of order (m,n), and is a
fundamental element in constructing A, .., in (2.1.15). Notably the elemen-
tary patterns are in lexicographic order, according to (2.1.17). As in [1], the
following m-th order ordering matrix.

Xm,n;l Xm,n;2 :|
)

(2119) Xm7" - [ Xm,n;3 Xm,n;4

is represented to record systematically these elementary patterns, where
(2120) Xm,n;oc = (A(k) )t1§k§2m*1

m,n;x

2m=1 column vector.

The first main result of this study is to introduce the connecting operator
C,,, and to use it to derive a recursive formula like (2.1.7) for AP, Indeed,

is a

Cm;ll C’m;12 C’m;13 C’m;14
C'm;21 Cm;22 Cm;23 C’m;24
Cm;?)l Cm;32 Cm;33 Cm;34
C1m;41 CYm;42 Cm;43 Cm;44

(2.1.21) Cp =
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Sm;ll Sm;12 Sm;21 Sm;22
Sm'13 Sm'14 Sm'23 Sm'24

2.1.22 = ’ ’ ’ ’
( ) Sm;31 Sm;32 Sm;41 Sm;42
Sm;33 Sm;34 Sm;43 Sm;44

where
(2.1.23)

m—2
C... = a1 Q2 o ® B2;1 32;2
" A3 Q4 By.s By
3 ;3 ;
2x2/ 9m—1yom—1

a1y A2
o Eom—2yom-—2 ® b 72
azj 45 | ) gm-1yom-1

is a 2771 x 2m~! matrix where Ejyj is the k x k full matrix; ® denotes
the Kronecker product, o denotes the Hadamard product and the product &
which involves both the Kronecker product and the Hadamard product, as
stipulated by Definition 2.2.

In Theorem 2.4, C,,.;; is shown to be a;,,0iyiy - - - Qippiyr » With i =4 and
tmi1 = J. Therefore, all admissible paths of A, from ¢ to j with length m
are arranged systematically in matrix C,.;;. Now, the recursive formula is

2m71 2m71
> St A > (Smia2)it AL o
k _ —
(2124) Ain,)n-i-l;a - ern_}l 2l7;—11 ;
Z (Sm;a3)klA£7?,n;3 Z (Sm;a4)klA£7?,n;4
=1 =1
form>2n>2 1<k<2m"land1 < a <4. (2.1.24) is the generalization

of (2.1.7).
The recursive formula (2.1.24) immediately yields a lower bound on en-
tropy. Indeed, for any positive integer K and diagonal periodic cycle 3105 - - - Bk Ok 11,

where 3; € {1,4} and k41 = [,

1
(2'1'25) h(A2) > W log p(SM;ﬁlﬁzsm;ﬁzﬁB e Sm;ﬁKﬁKﬂ)'

Equation (2.1.25) implies h(Ay) > 0, if a diagonal periodic cycle of 315, - - - Bk

applies, with a maximum eigenvalue of S,,.5,8, - - - Sm:g,, that greater than

one. This method powerfully yields the positivity of spatial entropy, which

is hard in examining the complexity of patterns generation problems.
However, the subadditivity of I, ,,(A2) is known to imply

1
(2.1.26) h(As) < —10g Ty (o)
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as in [10]. Consequently, (2.1.8), (2.1.10) and (2.1.26) indicate an upper
bound of entropy as

1
(2.1.27) h(As) < —logp(A,),
n
for any n > 2.
However, the Perron-Frobenius theorem also implies
1
(2.1.28) lim sup — log tr(A”1) = log p(A,,),
m— 00 m

where tr(M) denotes the trace of matrix M [20], [27]. Therefore, (2.1.28)
implies

1
(2.1.29) h(Ay) = limsup — log tr(A™1).
n

m,n— o0

In studying the double-limit of (2.1.29), for each fixed m > 2, the n-limit in
(2.1.29)

1
(2.1.30) lim sup — log tr(A7™")

n—oo

is first considered. (2.1.30) can be studied by introducing the following trace
operator

Cm'll Cm'22
2.1.31 T,, = ’ 22|
( ) |: Cm;33 C'm;44 :|

Then, a recursive formula for ¢tr(Al") can be verified

tTXm,2;1
(2.1.32) tr(A™) = |T"2 :
t’f’Xm72;4

I
for n > 2, where tr(X,,n.a) = (trA,gZ)n;a)iSkSzm,l and |v| = Zvj for vector

j=1
v=(v1,---,u)" Consequently, (2.1.29) and (2.1.32) yield

1
(2.1.33) h(Ay) = limsup — log p(T,,).
m

m—0o0
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Notably, for a large class of As, the limit sup in (2.1.28), (2.1.29), (2.1.30)
and (2.1.33) can be replaced by limit. See section 3.3 for details.

Now, (2.1.33) can be applied to find the upper bounds of entropy. For
example, when A, is symmetric,

1
(2.1.34) h(#2) < 5—1og p(Tzm),
for any m > 1. Since

(2.1.35) T, < B,

can be shown for any n > 2. Generally, (2.1.33) and (2.1.34) yield better
approximation than (2.1.11) and (2.1.27).

In summary, this study yields lower-bound estimates of entropy like (2.1.25)
by introducing connecting operators C,,, and upper-bound estimates of en-
tropy like (2.1.34) by introducing trace operators T,,. This approach accu-
rately and effectively yields the spatial entropy.

The rest of this paper is organized as follows. Section 3.2 derives the
connecting operator C,,, which can recursively reduce higher order elementary
patterns to patterns of lower order. Then, the lower-bound of spatial entropy
can be found by computing the maximum eigenvalues of the diagonal periodic
cycles of sequence S,,,.,3. Section 3.3 addresses the trace operator T,, of C,,.
The entropy can be calculated by computing the maximum eigenvalues of
T,.. When A, is symmetric, the upper-bounds of entropy are also found.
Section 3.4 briefly discusses the theory for many symbols on larger lattices.

§ 2.2 Connecting Operators

2.2.1 Connecting operators and ordering matrices

This section derives connecting operators and investigates their properties.
For clarity, two symbols on 2 x 2 lattice Zyo are examined first. Section 3.4
addresses more general situations. -

Let Ay and By be defined as in (3.1.1)~(2.1.4). The column matrices Ay
and 1?372 of Ay and By are defined by

il Q21 | A2 a22 . .

(2.2.1) Ag _ a31  G41 | A32 (42 _ { {12;1 {12;2 }
@13 A23 | 14 A4 A2;3 A2;4
a33 (43 | A34 (44




40 Pattern Generation Problems

and
bii bay | bia by B B
= ba1 ba1 | b3z bao [32-1 B2-2}
2.2.2 B, = _ | P21 Dy
(222) Sl Bos Bou
bsz bag | bza bus
, respectively.

For matrices of higher order n > 2, A,, A,y and A, 1., are defined as
in (2.1.5)~(2.1.7).

For matrix multiplication, the indices of A,,, are conveniently expressed
as

An'll An'12 :|
2.2.3 A, = ’ ’ .
( ) [ An;21 An;22

Clearly, A,.o = An.j1j,, Where
(224) o = Oé(jl,jg) == 2(]1 - 1) +j2.
For m > 2, the elementary pattern in the entries of A" is represented by

A A A

n;j1j24inigegs N5 JmJm+1

where j, € {1,2}. A lexicographic order for multiple indices
Jm1 = (j1j2 e 'jmjm+1)

is introduced, using

(2.2.5) X(mia) = 14 2" (s = 1).
s=2

Now,

(2.2.6) A e = AniiaAnigags = Anjmmsr

where

(2.2.7) a=a(j1, jme1) = 2051 — 1) + Jms1

and

(2.2.8) k= X(Jm+1)
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is given in (2.2.5). Notably, (2.2.5) and (2.2.8) do not involve j,,4+1 but

(2.2.7)does.
Therefore, A" can be expressed as
Am n;l Am n;2

2.2.9 A= ” E
( ) n |i Am,n;g Am,n;4 :|
where

2m71
(2210) Am,n;a = Z Agrli,)n;a‘

k=1
Furthermore,
(2211) Xm,n;a = (Agi,)n;a)ingQm*l'

1< k<2mt KXo 18 @ 2m=1 column-vector that consists of all elementary
patterns in A, ».o. The ordering matrix X, ,, of A" is now defined by

Xm,n;l Xm,n;2 :|

(2212) Xm,n - |i Xm,n;3 Xm,n;4

The ordering matrix X, , allows the elementary patterns to be tracked
during the reduction from A}’ ; to A}'. This careful book-keeping provides
a systematic way to generate the admissible patterns and later, lower-bound
estimates of spatial entropy.

The following simplest example is studied first to illustrate the above
concept.

Example 2.1. For m = 2, the following can easily be verified;

2
An;u + Ana2An2 Ana1Aniaz + Ana2Anoo

(22.13) A= Apo1Apar + ApoaApior Apo1 Az + Aigg ’
and
Agr)z;l = A%;llv Ag?zl;l = An;12An;217
(2_2_14> A%%L;z = An;llAn;127 A%@;g = An;12An;227
Ay 3 = Ano1Ann, As 3 = AnaaAnan,
ASZLA = An1Ana2, A%A = Ai;m-
Therefore,
_ ) ] i} )
Sl P ) Rl il |
(2.2.15) ) ) ) ]
Xoma = | G o X = |
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Applying (2.1.7), and by a straightforward computation,

A2
2.2.16 Xopi1a = nt1i11 }
( ) i [ Apii12A4ns1,21
bflAi;l + biobis A0 A, s b11b12 A1 Ap2 + 12014 A0 A ]
i bigb11 A3 Ana + bi1abis A, 4 Ass bigbio Ay 3An2 + 5%4/13“4

521531Ai;1 + baobss Ao Ays ba1bsa A1 Ao + baobss Ay Ay ]
i bagbs1 Ap.sApa + bosbss AysAss bagbso A3 Ao + 524534/13“4

Clearly, the jijs entries of A%H;H and A, +1.12A4,11,21 in (3.2.9) consist of
entries of Xy .., in (3.2.7) with a = «a(j1, j2) in (2.2.4). Moreover, the terms
in (3.2.9) can be rearranged in terms of Xs ., by exchanging the second row
in the first matrix with the first row in the second matrix in (3.2.9) as follows.
(2.2.17)

b%1 bl2bl3 17 Ai;l | [ bllbl2 b12b14 17 An;lAn;2 |
L b21b31 b22b33 1L An;2An;3 ] L b21b32 b22634 1L An;2An;4 ]

[ b13b11 bl4bl3 17 An;SAn;l ] [ b13b12 6%4 17 An;3An;2 ]
L b23b31 b24b33 L An;4An;3 ] L b23b32 b24b34 1L A%A

Applying (3.1.1), (3.1.2) and (3.2.2), (3.2.10) can be rewritten as

2 1T 2 T 1T T
aiq Q12021 An;ll 11012 Q12022 An;llAn;12
| @13031 Q14041 | | Api2An 1 | Q13@32 Q14Q42 | | Ani2An ]
A21G711 Q22021 An;21An;11 (21012 (5D An;21An;12

2
| @23031 Q24041 | | Ap2aAnn | | G23@32 Q24042 | | An;22

(2 9 18) _ (B2;11 o A2;11>X2,n;1 (32;11 o A2;12)X2,n;2 ]

(B2;12 © A2;11)X2,n;3 (32;12 o A2;12)X2,n;4

Therefore, after the entries of X5 ,,11.1 as in (3.2.10) or (3.2.15) have been
permuted, X ,,11,1 can be represented by a 2 X 2 matrix

(2.2.19) X2,n+1;1 = P(Xppi11) = §2,n+1;1;1 §27n+1;1;2 ] ’
2,n+1;1;3 2,n+1;1;4
where
Xont111 = S2.11 X201,
(2220) X2,TL+1;1;2 = SQ;lQXQ’n;27

X2,n+1;1;3 = S2;l3X2,n;3a
X2,n+1;1;4 = 52;14X2,n;4
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and

52;11 = 32;11 o {12;11 = 02;117
52;12 = 32;11 S 42;12 = 02;127
52;13 = B2;12 o {12;11 = 02;21>
52;14 = B2;12 © A2;12 = 02;22>

(2.2.21)

The above derivation indicates that X ,11., can be reduced to X .3
via multiplication with connecting matrices Cs.q3. This procedure can be
extended to introduce the connecting operator C,,, = [ Cy.ap |, for all m > 2.

Before C,, is introduced, three products of matrices are defined as follows.

Definition 2.2. For any two matrices Ml = (M;;) and N = (Ny,), the Kro-
necker product (tensor product) M @ N of M and N is defined by

(2.2.22) M ® N = (M;N).

For any n > 1,
ON"=N@N®---®@N,

n-times in N.
Next, for any two m X m matrices

where P;; and ();; are numbers or matrices, the Hadamard product P o Q is
defined by

(2.2.23) PoQ = (P - Qij),

where the product Pj; - Q;; of P;; and ();; may be a multiplication between
numbers, between numbers and matrices or between matrices whenever it is

well-defined.
Finally, product @ is defined as follows. For any 4 x 4 matrix

mip MMiz2 Mo1 Ma2
miz Mg M2z Moa
(2.2.24) M, = =

mg3y Mgz My1 Myg2
M3z 134 Mgz Tyq

M2;1 M2;2
M2;3 M2;4

and any 2 x 2 matrix

(2.2.25) N = { v, ] ,
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where m;; are numbers and N, are numbers or matrices, for 1 <14, j,k < 4,
define

mu Ny miaNy mai N1 moaNp
mi3Ng  miaNy mazN3 moyNy
mz1 N1 mzaNy my N1 mya Ny
m33Ng  mzaNy myzN3 myyNy

(2.2.26) M,y&N =

Furthermore, for n > 1, the n + 1 th order of transition matrix of My is
defined by
M, 11 = M} = MbOMb® - - - @M,

n-times in M. More precisely,
C e My o (OME™Y) Myy o (QMY™)
M, = Mo® (ML) = a2 @A 2

i 20(@M; ™) [M2;30(®M2 D Myy o (BMEY)

(2.2.27)

mlan;l m12Mn;2
m13Mn;3 ml4Mn;4
m31Mn;1 m32Mn;2
ma3 M3 M3y My

m21Mn;1 m22Mn;2
m23Mn;3 m24Mn;4 . |:Mn+1;1 Mn+1;2:|
m41Mn;1 m42Mn;2 N Mn+1;3 Mn+1;4
m43Mn;3 m44Mn;4

where

M, = &M; " = { M, M2 ] .

My.s My

Here, the following convention is adopted,

@MY = Egyo.

Definition 2.3. For m > 2, define
(2.2.28)

CYm;ll Cm;lZ Cm;l?) Cm;14 Sm;ll Sm;12 Sm;21 Sm;22
C. = Cm;21 Cm;22 Cm;23 C’m;24 — Sm;13 Sm;14 Sm;23 Sm;24
" Cm;31 Cm;32 Cm;33 C’m;34 Sm;31 Sm;32 Sm;41 Sm;42 ’

C’m;41 Cm;42 C'm;43 C’m;44 Sm;33 Sm;34 Sm;43 Sm;44
where
(2.2.29)

-2
o B Qo1 Qoo . [ Byy Bao 1™
m;af T ol ®
Qa3 Qa4 32;3 32;4
2% 2 gm—1y9om—1
a a
@) E2m72 xom—2 ® 15 20 .
a3ﬁ a4ﬁ 2m71 X2m71
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Similarly, for By, define

(2.2.30)
Um;ll Um;12 Um;13 Um;14 Wm;ll Wm;12 Wm;21 Wm;22
U. = Um;21 Um;22 Um;23 Um;24 — Wm;13 Wm;14 Wm;23 Wm;24
" Um;3l Um;32 Um;33 Um;34 Wm;31 Wm;32 Wm;41 Wm;42 '
Um;4l Um;42 Um;43 Um;44 Wm;33 Wm;34 Wm;43 Wm;44
where
(2.2.31)

_ bal baz 5 A2;1 A2;2 me
Um;aﬁ - <|: bag ba4 :| o <® |i A273 A274 :|
2%X2 om—1y9om—1
)
E m—2y9m—2 .
° ( ? ? ® <|: bgﬁ b45 2m71 Xgm—l

Sy = [Smias] a1d Wy = Wil
Now C,,41 can be found from C,, by a recursive formula, as in (2.1.7).

Theorem 2.4. For any m > 2 and 1 < o, § < 4,

A0, COmi18 Ay Cmiop
2.2.39 Constas = | o s |
22 g = | G e
and
_ qu Um;lﬁ b‘m Um;2ﬁ
(2.2.33) Un-t 1,05 = {bQSUm;?,ﬁ bayUnap |

Proof. By (3.2.43),

B2 SRm—2
SBI! = B,&(GBI?) = { Bag o (®B2)  Byg o (RBI2) } |

Byg o (@B5%) Bago (9By?)
Therefore,

Crnt1ia8 = (B2;a © (®B;n_1)) 0 (Eym-1y9m—1 ® 1212;6)
[ o1 (Bag 0 @BY2)  Gua(Bas 0 @BY?) ~

ta3(Baz 0 @B ?)  aa4(Bay o KBS ) O (Eym-1xgm-1 ® Azp)

aal[(Bg;l O Q:E)B;n_2) O (EQm—Q x2m—2 ® /:1275)] a,ag[(BQ;g O (E%)Bgn_2) O (E2m72 x2m—2 ® 1{12;6)
aag[(BQ;g o ®]B;n_2) e} (E2m—2 xom—2 ® Ag;g)] CLQ4[(BQ;4 @] ®B;n_2) (@] (EQm—2 xom—2 ® Ag;ﬁ)]

Qa1 Cm;lﬁ Aa2 Cm;2ﬁ
(a3 Cm;?)ﬁ Aaa Cm;4ﬁ
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A similar result also holds for U,,..s; the details are omitted here. The proof
is complete. O

Notably, (3.2.51) implies Cyuij IS @iyinQigiy * - * iy, With 44 = ¢ and
im+1 = J. Cp,y; consist of all words(or paths) of length m starting from ¢ and
ending at j. Indeed, the entries of C,, and B,,.; are the same. However, the
arrangements are different. C,, can also be used to study the primitivity of
A, n>2 asin [0].

That the recursive formula (2.1.24) holds remains to be shown. Indeed,
in (2.2.6) substituting n for n + 1 and using (2.1.7),

A(k)

m,n+1;a

= Ant11ie Anttigags - Antljmima
m

_H bailAn;ll bai2An;12
i1 bai3An;21 bai4An;22

where a; = a(ji, Jiz1), for 1 < i < m. After m matrix multiplications are
executed in (3.2.49),

(2.2.34)

k k
(2235) A(k) e = A?E?]z;n-i-l;a;l Am n+1;052
7 y Am,n-{—l;a;i’) Am,n+1;a;4
where
2m71
k l
(2.2.36) AD s = D K(myo, Bk, DAY
=1

is a linear combination of qu),n; 5 with the coefficients K (m; a, 3; k, ) which
are products of by, 1 <1 < m. K(m;a,;k,l) must be studied in more
details.

Note that
A 1;1 A 1;2
2.2.37 Am = | s s
( ) el [ Am,n+1;3 Am,n+1;4
2m71 2m71
k k
Z Agn,)n—l—l;l Z Agn,)n+1;2
k=1 k=1
- 2m71 2m71

Z Agi,)n—i-l;?: Z Af??n-i—l%
k=1

k=1
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m—1 m—1 m—1 m—1
gﬁl ﬁ%rgn—l—l-l-l gml ﬁ%rgn—l—l-lﬂ zm L jgj)n+1 2;1 2511
_ §§11 A?]z) n+1;1;3 lsml A?]z) n+1;1;4 §m11 A?J; n+1;2;3 l;n:lll
I2cn:I11 Am)n+1;3;1 §m11 Am)n+1;3;2 2m L Am)n-i—l 451 129772111
k=1 m,n+1;3;3 k=1 m,n+1;3;4 k=1 m,n+1;4;3 k=1
Now, X, nt1:08 is defined as
(2.2.38) Xm0 = (Anri1a0s)'-

A
A
A

A(
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(k)
m,n—+1;2;2

(k
m,n+1;2;4
(k)
m,n+1;4;2
)

m,n—+1;4;4

As in (3.2.10), the entries of X,, 41, are rearranged into a new matrix

Xm,n—l—l;a;l Xm,n+1;a;2

(2239) Xm,n-i—l;a = P(Xm,n-i-l;a) =

Xm,n+1;a;3 Xm,n+1;a;4

From (2.2.36) and (3.2.54),

(2240) Xm,n—l—l;a;,@ = K(m7 «, 6)Xm,”§5
where
K(m;a, 3) = (K(m;a, 3: k1), 1 <k, 1 <2m
is a 271 x 2™~ matrix. Now, K(m; a, 3) = Sp.ap must be shown as follows.

Theorem 2.5. For any m > 2 and n > 2, let S,,,..5 be given as in (3.2.44)

and (3.2.45). Then,
K(m;a,8) = 8

m;af3y

ie.,

(2241) Xm,n—l—l;a;ﬁ = Sm;aﬁXm,n;ﬁv

or equivalently, the recursive formula (2.1.24) holds. That is,

om— 1

Sm;al klAg%),n;l Z (Sm;a2)klA£711),n;2

> (
> (

)
(2.2.42) AW = =
Smias) AN s D (Smsat) Al s
=1

Moreover, for n =1,

am—1 am~—1

> (Sma)t Y (Smia2)i
(2.2.43) Ao = | 5 =1

> (Smas)kt Y (St

=1 =1

for any 1 < k < 2™ !and a € {1,2,3,4}.
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Proof. The result is proven by the induction on m.
When m = 2, and a = 1, (3.2.59) was proven as in Example 2.1. The
case with a = 2, 3 and 4 can also be proved analogously; the details are

omitted.

Now, (3.2.59) ia assumed to hold for m; the goal is to show that it also
holds for m + 1. Since

Anm:f = A4 'AZ%-H = l
(2.2.11) implies

Xm—l—l,n—l—l;l =

Xm+1,n+1;3 =

An-i—l;le,n—i-l;l
L An+1;2Xm,n+1;3 i

An-i—l;SXm,n—i-l;l
L An+l;4Xm,n+1;3 ]

An—l—l;l An+1;2 :| [ Am,n—l—l,l Am,n+1;2 :|
)

A3 Apgra

For a« = 1, by induction on m,

(An-i-l;lP(Xm,n-i-l;l)a An-i—l;ZP(Xm,n-i-l;?;))t

[ bllAn;l
L b13An;3

[ b21An;1
L b23An;3

bia A2 ]
bisApa |

b22An;2 ]
b24An;4 ]

Sm;lle,n;l
L Sm;13Xm,n;3

Sm;Sle,n;l
L Sm;33Xm,n;3

b11Smi11 An 1 Xt + 0125m:13 400X s 0115m12 401 Xonns2 + 012514 An:0 X 4
L b13Sm;11An;3Xm,n;1 + b14Sm;13An;4Xm,n;3 b13Sm;12An;3Xm,n;2 + b14Sm;14An;4Xm,n;4 ]

b215m;31An;1Xm,n;1 + b22Sm;33An;2Xm,n;3 b215m;32An;1Xm,n;2 + b22Sm;34An;2Xm,n;4
i b23.Sm;31 An:3 Xm i1 + 024Sm:33 404X ns 0235m:32 403X mni2 + 024 S84 An:a Xom s |

, and Xm+1,n+1;4 = {

Am,n+1,3 Am,n+1;4

X o An—l—l;le,n—i-l;Q
) m+1n+1;2 — )

An+1;2Xm,n+1;4

An+l;3Xm,n+1;2
Ant1:4Xm 154

Sm;12Xm,n;2

Sm;14Xm,n;4 ]

Sm;BZXm,n;2

Sm;34Xm,n;4 ]

Hence X,,41,+1.1 can be represented by a matrix

A

Xm+1,n+1;1 = P(Xm+1,n+1;1)

b11.Sm;11
i b21.Sm;31

b13Sm;1l
L b23Sm;3l

b12Sm;13
b22Sm;33 1L

bl4Sm;13
b24Sm;33 1L

_ Xm—i—l,n-l—l;l,l Xm+1,n+1;l,2

An;le,n;l
An;2Xm,n;3 ]

An;BXm,n;l
An;4Xm,n;3 ]

b11.Sm;12
i b21.Sm;32

b13 Sm;lZ

L b23 Sm;32

Xm+1,n+l;1,3 Xm+1,n+1;l,4

b12Sm;:14
b22Sm;34 11

b14 Sm;l4
b24 Sm;34 1L

An;le,n;2

An;2Xm,n;4 ]

An;3Xm,n;2

An;4Xm,n;4 ]
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~ Once again, (3.1.1), (3.1.2) and (3.2.2) can be used to recast the matrix
Xm-i-l,n-‘rl;l as

allcm;ll 012Om;21 X allcm;12 &120m;22 X
m+1,n;1 m—+1,n;2
L a13Cm31 @140 i L a13Cm32  a14Cma2 i
a'21Cm;11 022Om;21 X a2lcm;12 @220m;22 X
m—+1,n;3 m~+1,n;4
L a'23Cm;31 024Om;41 ] L a23Cm;32 @24Cm;42 i

According to Theorem 2.4, the above matrix becomes

o Cm—l—l;lle—i-l,n;l Cm+1;12Xm+l,n;2 o Sm—l—l;lle—i-l,n;l Sm+1;12Xm+l,n;2
Cm+1;21Xm+1,n;3 Cm+1;22Xm+1,n;4 Sm+1;13Xm+1,n;3 Sm+1;14Xm+1,n;4

The cases with a = 2,3 and 4 can also be considered analogously (3.2.59)
follows.

Next, (3.2.60) follows easily from (2.2.35), (2.2.36) and (3.2.59).

Equation (3.2.61) remains to be shown. If the 2 x 2 matrix

A Are A Anp 1
2.2.44 A= ’ : = : =
( ) ! |i A1;21 A1;22 A1;3 A1;4 11
is introduced, then the previous argument also hold for n = 1. Hence, (3.2.61)
holds. The proof is complete. O

For any positive integer p > 2, applying Theorem 2.5 p times permits the
elementary patterns of A7, to be expressed as the product of a sequence
of S5, and the elementary patterns in AJ'. The elementary pattern in
ATl s first studied.

For any p > 2 and 1 < ¢ < p — 1, define

A(k) A(k)
(2.2.45) A(k) _ m,n+p;o581;82;38¢;1 mn+p;o;81;62;+58¢;2

e mn+p;a; 81502538 A(k) A(k)
m,n+p;o; 08150825 3843 m,n+p;o; 8150825 38¢;4

Then

2m71 2m71 P
k lp
(2.2.46) Ain?nﬂ;a;ﬁl;ﬁ%,,,;ﬁp = Z Z (H K(m; Bi-1, Bis li-1, lz’))Afn,ZL;gp,

L=1 =1 i=1

where Jy = a and [y = k can be easily verified. Therefore, for any p > 1, a
generalization for (3.2.53) can be found for A", as a 2°*! x 27*! matrix

(2.2.47) ?ﬂ, = [Am,n-i-p;a;ﬁl;BZ"' %51)}
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where
2m71
_ (k)
(2248) Am7n+p§0¢§51§52"' iBp — Z Am,n;a;ﬁl;ﬁg--- Bp*
k=1

In particular, if a; 31,82+, 3, € {1,4}, then Ay, nipiaisii6.--;8, lies on the
diagonal of A in (2.2.47).

n-+p

Now, define

k
(2249) Xm,n—i—p;a;ﬁl;ﬁg;--- iBp — (Agn,)n—i-p;a;ﬁl;ﬁg;m ;ﬁp)t‘
Therefore, Theorem 2.5 can be generalized to

Theorem 2.6. For any m > 2, n > 2 and p > 1,

(2.2.50) Xonn+piaspuifa-i8y = Omiapy Smibifa = SmiBy—1 8y X myni6y
where o, §; € {1,2,3,4} and 1 < i < p.
Proof. From (2.2.46), (3.2.58) and (3.2.60),

om— 1 om— 1 P

k L
Ai%?ner;a;ﬁnﬁz;m;ﬁp - Z T Z (H K(m; Bi-1, Bi; li—1, li))Afn,Zz;g,,

=1 =1 i=1
2m71 2m71 P

— Z C. Z (H(Sm;ﬁi,lﬁi)li—lli)Ag":ZHﬁp

=1 lp=1 i=1
2m71 2m71
(lp)

=3 > (S ion (Smspus)unta -+ (Smssy 18ty 115 A,

Lh=1  l=1

2m71

(lp)

= Z (Sm§5051 Sm;ﬁlﬁz e Sm?ﬁpflﬁp)l()lpAmljn;ﬁp

l=1

2m71
_ S S S A(lp)
= (Smias Smsn Sy ity At

l=1

is derived. By (2.2.49), then

_(A) t
Xm,n—l—p;a;ﬁl;ﬁg;--- iBp — (Am,n—i-p;a;ﬁl;ﬁz;--- ;ﬁp)

2m71
l
= (Z (Sm;aﬁ1 Sm;ﬁlﬁz T Sm;ﬁp—lﬁp)’flpAg;zz;ﬁp)t
Ip=1

= S Smip1s *** OmiBy_18pKmnify-

The proof is complete. O
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2.2.2 Lower bound of entropy

In this subsection, the connecting operator C,, is employed to estimate the
lower bound of entropy, and in particular, to verify the positivity of entropy.
First, recall some properties of I';, ,, and spatial entropy.
'), satisfies the subadditivity in m and n:

(2251) le-}-mz,n S le,nrmz,na
and
(2252) Fm,nl-i-ng S Fm,nlrm,ngv

or equivalently,

(2.2.53) |ATTm2] < AT [ AL
and
(2.2.54) |AT o < TAT AT

for positive integers m,n, my, ny, mo and ny. Here

11
(2.2.55) A = { 11 ]
is applied.
The subadditivity property implies
. 1 " 1 1
(2.2.56) lim sup — log |AT'| < — log |[AP™"
m,n—oo TN pq

for any p and ¢ > 2. Therefore,

1
h(Ag) = lim —log |AT

m,n—o0 MMN,

exists, and equals

1
2.2.57 inf — log |AP7Y].
(2.2.57) o g oslAr

In particular, h(As) has an upper bound

1
(2.2.58) hAs) < —-log [P
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for any p and ¢ > 2.
Similarly, when A, is horizontal (or vertical) transition matrix for any
m > 1 and q > 2,

1 1
(2.2.59) limsup — log |A)'| < —log |[A[].
n q

n—~0o0

Hence, the spatial entropy is h,,(As) on an infinite lattice Z,11x 0o (0T Zooxm1)
and

.1 | m
(2.2.60) hn(Ag) = nh_)rrolo - log |AT'] = ;gg p log |A7"].

For the proof of the above results, see [15].
Furthermore, by Perron-Frobenius theorem,

1
(2.2.61) lim — log |AT"| = log p(A,,).

m—oo M,

Therefore, for any n > 2
1
(2.2.62) h(Ay) < " log p(A,,).

For a proof of (2.2.61), see [1], [30].
The following notation is adopted.

Definition 2.7. Let X = (X1, -, Xy)!, where X3 are N x N matrices.
Define the summation of X by

N
(2.2.63) X =) X
k=1

If M = [M;;] is a M x M matrix, then

M M
(2.2.64) IMX|=> ") M;X;.

i=1 j=1

Note that, (2.2.63) implies

2m71
(2265) ‘Xm,n;a| = Z Agrli,)n;a = Am,n;a'
k=1

As usual, the set of all matrices with the same order can be partially ordered.
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Definition 2.8. Let M = [M,;] and N = [N;;] be two M x M matrices,

Notably, if Ay > A} then A, > A/ for all n > 2. Therefore, h(Ay) >
h(A%). Hence, the spatial entropy as a function of A, is monotonic with
respect to the partial order >.

Definition 2.9. A K + 1 multiple index

(2.2.66) Bx = (5182 - - BrBr+1)
is called a (periodic) cycle if
(2267) 6}(4_1 = 51.

It is called a diagonal cycle if (2.2.67) holds and
(2.2.68) Br € {1,4}

foreach 1 <k < K + 1.
For a diagonal cycle (2.2.66), denote

(2.2.69) Br = Bu; Bo; -+ 5 e
and
(2.2.70) By = Br; Bre; -+ 3 B (1 times)

First, prove the following Lemma.

Lemma 2.10. Let m > 2, K > 1, Bg be a diagonal cycle. Then, for any
n>1,

(2'2'71) p(AgK-M) > p(|(SM;51525m;5253 T Sm;ﬁKﬁKﬂ)nXm,?;ﬁlD

Proof. Since By is a periodic cycle, Theorem 2.6 implies

(2.2.72) Xm,nK+2;B}} = (S 82 SmiBas * 'Sm;ﬁK5K+1)nXm,2;51'

Furthermore By is diagonal, and |X,, .k vopr| = Apnk 12,5 lies on the di-
agonal part as in (2.2.47) with n + p = nK + 2, therefore

(2:2.73) P(ATk2) 2 p(‘Xm,nK—l—Zﬁ_}L{ )-

Therefore, (2.2.71) follows from (2.2.72) and (2.2.73).
The proof is complete. O
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The following lemma is valuable in studying maximum eigenvalue of
(SM;5152 T Sm;ﬁKﬁKﬂ)nXm,?;ﬁl in (2'2'71)'

Lemma 2.11. For any m > 2, 1 <k <2™ ! and a € {1,4}, if

(2.2.74) tr(AY)

m,2;a

) =0,
then for all 1 <[ < 2m71,
(2.2.75) (Sm.a1)k =0 and (Sp.a4)u = 0,

i.e., the k-th rows of matrices S,,.01 and S,..4 are zeros. Furthermore, for
any diagonal cycle By, let U = (uq, ug, - -+ ,ugm-1) be an eigenvector of
S8 Smipass * * Smipreprs if u # 0 for some 1 < k < 2™~ then

(2.2.76) tr(A®)

m,2;a

) > 0.

Proof. Since Aﬁ,’j?g;a can be expressed as in (3.2.61). Therefore, tr(A,(ﬁ,)Za) =0
if and only if (2.2.75) holds for all 1 < [ < 2™~!. The second part of the
lemma follows easily from the first part.

The proof is complete. O

By Lemma 2.10 and Lemma 2.11, the lower bound of entropy can be
obtained as follows.

Theorem 2.12. Let 5,3, - - - Bx31 be a diagonal cycle. Then for any m > 2,

1
(2'2'77) h(A2> > m—KlOg p(Sm;ﬁ1ﬁQSm;ﬁ253 e Sm;ﬁKﬁl)'
and
1
(2'2'78) h(A2) > ng p(WM;ﬁlﬁz Wm;ﬁzﬁa T WM;5K51)'

In particular, if a diagonal cycle 310, - - - B /31 exists and m > 2 such that

p(SM;51525M;5253 T SM;5K51) > 1,

or
p(Wm;ﬁlﬁz Wm;ﬁzﬁa T WM;5K51) > 1

then h(As) > 0.



2.2. CONNECTING OPERATORS 55
Proof. First, show that

1 . n
(2'2'79) h(A2) > m—K lim sup (IOg /0(|(SM;515257H;5253 T Sm;ﬁKﬁ1) Xm,2;51|)'

n—~00

Indeed, from (2.1.11) and (2.2.71),

h(Az) = Jl—)n;o nk 12 log p(Ank12)
= nhif)lo m log p(A7k 12)
= g nsup - (10g p(|(Smipg, - Smiprcsn )" Xm 201 1)).
Now, the following remains to be shown
(2.2.80)
lim sup %(bg P (Smigin -+ Smigiesn)" Xmzi ) = 108 p(Smipiga -+ Smipresn)-

Since X, 2.8, = (Aig?z;ﬁl)t, if tr(Afj’)Zﬁl) = 0 then Lemma 2.11 implies the
k-th row of Sy,.5, 3, is zero which implies that the k-th row of (S,,.5,8, = - - S )"
is also zero for any n > 1.

If tr(A)), ;) = 0 for all 1 < k < 271, then Syp,4, = 0. (2.2.80) holds
trivially.

Now, assume that 1 < &k’ < 2™~ exists such that tr(Affb:%;ﬁl) > (0. Define

~

(2281) X = (Agi:%yﬁl)t = (Xh o 7XM)7

where t?“(Affi:%;gl) >0forl <k <M <2™ ! Then p(Xj) >0forl1 <j<
M.

Let M be the M x M sub-matrix of S,,.8,8, - - Sm:gxs from which the
k-th row and k-th column have been removed whenever tr(Affb?Q; 5) = 0 for
1 <k<2mt

Clearly,
(2.2.82) (Sisgugs * + Smspen)" Xz | = MM X,
and
(2.2.83) P(Smipips *  Smipr ) = p(M).

The proof of (2.2.80) comprise three steps, according to

(i) M is primitive,
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(ii) M is irreducible, and
(iii) M is reducible.

(i) M is primitive. Then by Perron-Frobenius Theorem the maximum
eigenvalue p(M) of M is unique with maximum modulus, i.e.

(2.2.84) p(M) = A > [N,

for all 2 < j < M, where \; are eigenvalues of M. Moreover, a positive
eigenvector vq = (v1, vg, -+ ,vp)" is associated with Ay [26], [27]. Fur-
thermore, Jordan canonical form theorem states that a non-singular
matrix P = [P;;]a«n exists, such that the real Jordan canonical form

of M is
MO 0
(2.2.85) M = PMP~! = 0 J" O ,
0 o e T

where J,,,, 2 <k < g are real Jordan blocks and the associated eigen-
value \j, of .J,,, satisfies (2.2.84). Moreover, the positivity of eigenvector
vy implies that P can be chosen such that

M

(2.2.86) > pi=1
i=1

and

(2.2.87) P >0

for all 1 < j < M. Therefore, by (2.2.86)

IM"X| = [PM"X| = |PM"P~'PX|
= |(PMP~!)"PX| = [M"PX|
M M

=MD PX Y X5}
j=1 j=1

where

(2.2.88) lim g, ; =0,

n—oo

forall 1 <j < M, by (2.2.84).
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(iii)

Hence, by (2.2.87) and (2.2.88),
1 A
(2.2.89) lim - log p(IM" X ) = log A;.

Combining with (2.2.82), (2.2.83) and (2.2.89), (2.2.80) follows.

M is irreducible.

If M is irreducible but imprimitive, then k > 2 exists, such that
A= [of == [N > A

for all 7 > k. Then, by applying a permutation, M can be expressed as

[0 My 0 - 0
0 0 My -~ 0
(2.2.90) M= | : : D : ;
0 0 Mi_1x
| My, 0 : 0 |
and,
M, 0 0
(2.2.91) Mt = | MQ (:) :
0 0 M,

where M; = M; j 1M1 42 - M;_1; is primitive with the maximum
eigenvalue \¥, see [26], [27]. Hence, by the same argument as in (i)

1 ~
lim —log p(IM™X]) = AT,
(2.2.80) follows.
M is reducible.

In this case, by applying a permutation, M can be expressed as a block
upper triangular matrix:

Mll M12 cee e Mlk
0 Moy - - M
(2.2.92) M = > 0
0 0 S
0 0 0 My
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where M;; is either irreducible or zero. Furthermore,
k
o(M) = | Jo(M;;),
j=1

where o(M) and o(M,;) are the sets of eigenvalues of M and Mj;,
respectively. In particular, 1 < j < k exists, such that

(2.2.93) p(My;) = p(M) = Ay

[26], [27]. Therefore, applying (2.2.83), (2.2.93) and the same argument
as in (ii) yields (2.2.80).

The proof is complete.

Definition 2.13. Let D denote the set of all diagonal cycle:

D = {0102 BrBr+1|f152 - - - BxPr+1 satisfies (2.2.67) and (2.2.68)},

define
1
(2'2'94) h. (A2) - sSup —K log p(Sm;5152 SM;5253 e Sm;ﬁKﬁ1)'
m>2,61 P2 Br1€D T
and
1
(2'2'95) h; (A2) = sup ——log p(Wm;ﬁlﬁz Wm;ﬁQﬁS e Wm;ﬁKﬁl)'

m>2, f1--Br€D mk

Then Theorem 2.12 implies

(2.2.96) h(Ag) > hu(As) and h(As) > . (A,).

Knowing whether the equality holds for A, is of interest, since h.(Ay) and

h!(As) are more manageable than h(Aj). However, a class of Ay has been
found for what equality (2.2.96) holds; details can be found in Example 2.14.
of the next subsection.
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2.2.3 Examples of transition matrices with positive en-
tropy

In this subsection, various examples are studied to elucidate the power of
Theorem 2.12 in verifying that the entropies are positive. First, Golden-
Mean type transition matrices are studied.

Ezample 2.14. (A) Golden-Mean

When two symbols on two-cell horizontal lattice Zsy; and vertical lat-
tice Zyxo are considered and both transition matrices are given by

golden-mean, i.e.,
11
H1 - Vl - |: :| 5

10
then the (horizontal) transition matrix Ay on Zsys is
1110
1010
(2.2.97) Ay = 1100/
0000
as in [11]. Verifying
(2298) BQ - AQ - fBég = AQ.
is also easy. Furthermore, for any n > 2,
A, B, A, 0
| A Bunn | | G 0 C, O
(2.2.99) A, = [ Cooi 0 =la B 0 0l
0O 0 0 0
where LB
An+l = |i C: On :|

with C,, = B, and A,' = A, i.e., A, are symmetric for all n > 2.

Moreover, the following two properties hold:

(i) For any m > 2,

(2.2.100) Crmn = A,
where
(2 9 101) A = 11011 Q12G21

o | aizasr apgaqn |

and
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(ii) for any m > 2,

1 1
(2.2.102) —10g p(An-1) < h(As) < —10g p(Am).
Therefore,
(2.2.103) h(As) = h.(As) > 0.

The numerical results appears in Example 2.29.

(B) Simplified Golden-Mean.

Consider

(2.2.104) Ay =

O ==
OO O
OO O
o O O O

(2.2.104) cannot be generated from one-dimensional transition matrices
H;, and Vy, as in the Golden-Mean (2.2.97). Equation (2.2.104) is
obtained by letting ass = ass = 0 in the Golden-Mean (2.2.97). (2.2.98)
is easily verified, and for any n > 2,

(2.2.105) Apyr =

o o © o

0
A, O 0
0 0

Furthermore, (i), (ii) and (2.2.103) hold as in (A).
(C) Generally, if A, satisfies the following three conditions
(C1) By = Ay,
(C2) a1; =11if Ay; #0for 1 < j <4,
(C3) Ayq > Ay for 1< j <4,

then (i), (ii) and (2.2.103) hold. The matrices Ay, which satisfy (C1),
(C2) and (C3) can be listed as

11 1 0

1 0 23 0
(2.2.106) L am 0 0]

0 0 0 0
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and
1 1 1 1
11 ags agy
(2.2.107) 1 as, 1 ag |’
1 ass asz au

where a;; is either 0 or 1 in (2.2.106) and (2.2.107).
Notably, if (C2) and (C3) are replaced by

(CQ)’ Ay = 1if Ag;j §£ 0 for 1 S] S 4,
(CB), g2;4 Z Ag;j for 1 Sj S 4,

then for any m > 2,

(2.2.108) Coiat = A1

with

(2.2.109) A, = | 9101 Ca202
(43034 A44Q44

and property (ii) and equation (2.2.103) hold.

In Example 2.14, the diagonal parts Asq or Asy are dominant. In this
case, only C,.q11 or C,.44 is required to apply Theorem 2.12. In contrast,
when Ay, and Ay, are no longer dominant as in the following examples, A
and As.3 can complement each other to establish that the entropy is positive.

Ezample 2.15. (A) Consider

= = O

(2.2.110) Ay =

O = O =
S O = =
o O OO

0
that (2.2.98) holds can be verified and

0 1 1 0
02;112[1 0], 02;222[1 0]

1 1 0 0
02;33:{0 0}, C2;44:{0 0}

1 1
S9.1452.41 = { 11 }

Therefore,
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and

1
(B) Consider
01 10
1 01 1
(2.2.111) Ay = 100 1
1 1 10
Then verifying
01 1 0 01 1 0 01 10
1 01 1 ~ 1 0 0 1 ~ 1 1 01
Bo=ly g1 1] Be= |y g g | andie=1, 4
01 10 1 1 10 01 10
is simple.
Furthermore,

10 01
O233_|:O 1:|> C1244—|:1 0:|
and
01 10
U2;11 - 1 0 Y U2;22 = O 1 ?
10 01
U2;33 - 1 1 ) U2;44 = 1 0

Now, for any diagonal cycle, 81 - - - Bk 1, p(S2:6.8, -+ S28,5) = 1, h(A2) >0
cannot be established.
However,

1 1
WoniWonaWam = Uz UspaUsizs = [ 10 }

which implies

h(Ag) > =log g,

=

where

(2.2.112) g= %(1 +V5)
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is the golden mean, which is a root of A2 — A — 1 = 0.

This example demonstrates the asymmetry of Ay, and Bs in applying
Theorem 2.12, to verify the entropy is positive. Both C,, and U,, are typically
checked for completeness.

FExample 2.16. Consider

(2.2.113) Ay =

— o O =
O O O =
OO O =
O = = =

Then it is easy to check that

2 0 G 0
it = [0 0 ] s [ 0 0 ]

and
G 0 00
10 e 00
Sk =10 o 00|
0O 0 00
where
11 1 0
(2.2.114) G—{l O]andel_{OO]'
Therefore,

1

1
1 logg} = glogg.

1 1
h(Ag) > max{é log 2, 3 log g,

Example 2.17. Consider

0111
1000
(2.2.115) A2=11 0 0 0
1000
Then
0110
1100 N ~
]Bg = 101 0 = AQ and ]Bg = AQ.
0000
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Therefore
01
02711: |: 1 1 :| EG/.
Furthermore,
Cou=Goeaad
and

CQm;ll = G/ X (®(61 X G/)m_l)
can be proved, and which implies

1 1
(2.2.116) 3 log p(Comar) = 3 log g.

for all m > 1. Hence, h(A;) > $logg. Moreover, in Remark 2.27 (ii), it can
be shown that h(A;) = Llogg

§ 2.3 Trace operators

2.3.1 Trace operator T,,

The preceding section introduces connecting operators C,,,, which can be used
to find lower bounds of spatial entropy. This section studies the diagonal
part of C,,, which can be used to investigate the trace of A”. When A, is
symmetric, Ty, gives the upper bound of spatial entropy.

The trace operator is defined first.

Definition 2.18. For m > 2, the m-th order trace operator T,, of A, is
defined by

(2.3.1) T, = |: Cm;ll Cm;22 :| _ { Sm;n Sm;14 }

Cm;33 C1m;44 Sm;41 Sm;44

where C,,; is as given in (2.1.23) or (3.2.45).
Similarly, the m-th order trace operator T, of B, is defined by

U, U, W, . W
2.3.2 T = mill Ymi22 m;11 mi14
( ) " |iUm§33 Um;44 Wm;4l Wm;44

where U,,;; is as given in (3.2.47).

The relationships between the trace operator T,,, T, and A,,, B,, are
given as follows.
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Theorem 2.19. For any m > 2,

(2.3.3)
11 A2 Q12  A22
E m—2 m—2 ® E m—2 m—2 ®
e | 431 Q41 | e | 432 Q42 |
Tm - (]Bm)27”><2mo i ) ) )
@13 23 A14 Q24
E m—2 m—2 ® E m—2 m—2 ®
e | @33 Q43 e | @34 Q44
and
(2.3.4)
[ [ bii ba | [ bia by 1]
E2m72 om—2 ® E2m72 om—2 ®
* L bs1 bu i * L bsy  bao i
T/ = (Am)27”><2mo i ) ) )
biz b3 big boy
E2m—2 ogm—2 ® E2m72 ogm—2 ®
L * L bz bas i x L b3y bas 1
In particular,
(2.3.5) Ty < B, and T, < A,,.
Proof. By (3.3.1) and (3.2.45),
[ a1 Q21 ] [ Q12 22
E m—2 m—2 ® E m—2 m—2 ®
e | @31 Q41 | e | @32 Q42
Tm == (Bm)2mx2mo i ) ) )
@13 23 Q14 Q24
E m—2 m—2 ® E m—2 m—2 ®
e | @33 Q43 e | @34 Q44

A similar result also holds for T/ . Hence, (3.3.25) follows immediately.
The proof is complete. O

Notably, the trace operator T,, (or T, ) preserves all periodic words
Ao Aigig * * aimim+1 (bi1i2 bi22‘3 s bimi7n+1) with ’im+1 = 7:1 of length m system—
atically as B, (or A,,).

The traces of the elementary patterns are defined accordingly.

Definition 2.20. For m,n > 2 and 1 < a < 4, define

(237 b (Xomia) = () rcncors
and
(238) tm,n - (tT(Xm,n;l)vtT(Xm,TLA))t?

which are 21 and 2™ vectors, respectively.
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Note that

om— 1

(AT = (X2 AR e A
(239) - |tT( m,n,l)|+|tr( m,n,4)|

[t
First prove that T,, can reduce the traces of higher-order to lower-order.

Proposition 2.21. For m > 2 and n > 2,
(2.3.10) tmnt1 = Titmn

Proof. By Theorem 2.5, it is easy to see

tT(Xm,n-‘rl;l) Cm;lltr(Xm,n;l) + Cm;22tr(Xm,n;4)
tT(Xm,n+1;4> Cm;33tT(Xm,n;1) + Cm;44tr(Xm,n;4)
Then, (3.3.16) follows immediately.
The proof is complete. O

Repeatedly applying Proposition 2.21 yields the following result.

Theorem 2.22. Form > 2 and n > 1,

(2.3.11) tr(Ays) = [Thtm.2]
(2.3.12) = Y |msmSmmss  Smipa r(Xm 28,
ﬁk€{174}
Proof.
tr(A7)
2m71 om— 1 om— 1 2m71
k) k
:Ztr mnll Ztr mn14 Ztr Ainn41 +ZtT(A1(n,)n;4;4)
k=1 k=1

:‘tr(an11)|+|tr( mn14)‘+‘tr( mn41)|+|tr( mn44)‘
= [tr(Sma1 Xmn—11)| + [tr(SmaaXmn—1.4)| + [tr(Smar Xman—1.1)| + [t7(SmaaXmn—1.4)]
:|P]I‘I tm,n—1|

here Theorem 2.4 is used.
Reduction on n, yields

t’l“(Azl) = |T:72_2tm72 | .

Finally, (3.3.18) follows from (3.3.1) and (3.3.11).
The proof is complete. O



2.3. TRACE OPERATORS 67

The following lemma is needed to show (2.1.33).

Lemma 2.23. Let V,, be a nonnegative eigenvector of T,, with respect to
the maximum eigenvalue p(T,,). If p(T,,) > 0, then

<Vm7tm,2> > 07
where { , ) denotes the standard inner product of C*".

Proof. Let V,,, = (uy, -+ ,up,uj, -+ ,uy,) be a nonnegative eigenvector of
T,,, where M = 2™7'. Since p(T,,) > 0, by Lemma 2.11, if u;, > 0 (or
u; > 0) then tr(A,(ﬁ,)m) > 0 (or tr(AiQM) > 0). The result follows by
(3.3.11).

The proof is complete. O

Now, (2.1.33) can be proved.

Theorem 2.24. For any m > 2,

(2.3.13) lim sup — log tr(AM) = log p(T,,),
n—oo N
and
1
(2.3.14) h(As) = lim sup — log p(T,,).

Furthermore, if A,, are primitive for all n > 2, then limsup in (3.3.19) and
(3.3.20) can be replaced by lim, i.e.,

1
(2.3.15) lim —logtr(Al") =log p(T,,)
n—oo N
and
1
(2.3.16) h(As) = lim Elogp(’ﬂ‘m).

Proof. By Perron-Frobenius theorem, for all n > 2, we have

1
(2.3.17) lim sup — log tr(A]") = log p(A,,).

m—0o0

Therefore, by (2.3.17) and Theorem 2.22, we have

1 1 1
h(A2) = lim —log p(A,) = limsup — logtr(A]") = lim sup — log T tm.2|-

n—oo 1 n,m—oo 1MN n,Mm—00
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By Lemma 2.23 and by argument used to prove Theorem 2.12,

1
(2.3.18) lim sup — log | T}, 2| = log p(T),)

n—oo n

can be shown, and (3.3.19) and (3.3.20) follow immediately.
When A,, are primitive for all n > 2, (2.3.15) and (2.3.16) follow.
The proof is complete. O

Now, the symmetry of A, is established to be able to be inherited by the
higher order matrices.

Proposition 2.25. If A, is symmetric, then A, is also symmetric for each
n > 3.

Proof. The proposition is proven by induction on n.

Let M = M, My be a square matrix and M;, 1 < i < 4, all be
Ms M,
square matrices. Then, the transpose matrix M’ of M is
M,* Mt
t_ 1 3
M = { o, ] |

Therefore, M is symmetric if and only if
M," = My, Ms' = M, and M," = M,.
In particular, A, is symmetric if and only if
(2.3.19) Ag;l = Ay, Ag;?) = Ay and A';A = Ay
Now, A, is assumed to be symmetric, such that
(2.3.20) Afm = A1, Az;g = A, and Afl;4 = A4

Since ) )
An-‘rl;a = [AQ;OJ]QXQ o |: AZ:; AZfl :| )
(3.3.21) and (3.3.21) imply

t t t
An—i—l;l = Anj1a, An+1;3 = Anj1p2 and An+1;4 = Anjra

Hence, A, is symmetric.
The proof is complete. O
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Now, upper estimates of spatial entropy h(As) are obtained when A, is
symmetric.

Theorem 2.26. If A, is symmetric then for any m > 1,
1
(2.3.21) h(As) < %bgp(’]l"gm).

Proof. By Proposition 2.25, A2™ is symmetric for any m > 1. The symmetry
of A?™ implies that all eigenvalues of A?™ are non-negative. Hence,

(2.3.22) p(An)"" = p(A7") < tr(AT™).

On the other hand, the subadditivity of (2.2.58) implies

(2.3.23) h(Ay) < log |A2m*|.

1
(2mk + 1)n
Therefore, (3.3.24), (3.3.22) and (3.3.17) imply

h(Ag) <

log |A7™] = lim ——log p(A;")

1

lim ——m—
nklgloo (2mk + 1)n mn

< lim log tr(A2™) = lim log | T4, 2t om 2|
n—oo 2Mn n—oo ZMmn
< —1 Taom).
< 5108 p(Tom)
The proof is complete. O

Notably, T,, (or T/ ,) yields a better estimate than B, (or A,) whenever

(2.3.24) h(As) < — log p(Tym)

1
m
holds.

Remark 2.27. (i) The problem in which A,, are primitive for all n > 2
has already been investigated [6]. In [0], various sufficient conditions
have been found to ensure that A, are primitive for all n > 2. Notably,
limit in (2.3.15) and (2.3.16), instead of limsup in (3.3.19) and (3.3.20),
causes A, to have a unique maximum eigenvalue with a maximum
modulus. Therefore, A,, may be imprimitive but (2.3.15) and (2.3.16)
still hold. For example, Golden-Mean and simplified Golden-Mean in
Example 2.14 are imprimitive but (2.3.15) and (2.3.16) still hold. The
remaining matrices of these A,, are primitive if their rows and columns
with zero entries are removed.
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(ii) In general, limsup cannot be replaced by limit. For example, consider

0111
(2.3.25) Ay =

—_ = =

0 00
000
000

Further computation shows that

Tomt1 =0
and
T, — [ (@G @e)" )G e1® (3(G @ er)" ) }
e1® (R(G ®@e)™ ) e1 @ (®(G ®@e)™ 1)
for all m > 1, where G’ = [(1) }} and e; = l(l] 8]
Therefore, p(T,,+1) = 0. Furthermore, it can be shown that
(2.3.26) p(Tam) < g™ + g™

Combining (2.2.116) and (2.3.26), h(A;) = 3logg. Hence (3.3.20)
holds only for limsup. Unlike (2.2.62) this example demonstrates that
(3.3.23) does not hold for any n = 2m + 1. This phenomenon is a
disadvantage in determining the upper estimate of entropy associated
with replacing A,, with T,,.

Ezxample 2.28. Consider

1
0
Ay = 0

_o O =
o OO =
O =

0
which was studied as in Example 3.2.9. Now, A, is asymmetric. Furthermore,
tr(A?) =3

can be obtained for all n > 2. Hence, (3.3.24) and then (3.3.26) fail when
m = 1. However,

G 0 00
{0 e 00
Cosi=1109 0 00|
0 0 00
711 10 oo .
WhereG—{1 0},61— 0 O]andO—{O 0}.Henoetr(An)grows

at least exponentially with exponent p(G) = g, the golden-mean.
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Whether (3.3.26) holds for some m > 2 is of interest.

Example 2.29. Consider the Golden-Mean

which was studied as in Example 2.14.

Ag

O = =
O = O =
S O = =
o O O O

results can be obtained as follows.

A, is symmetric, so the numerical

T

PAm_1)m

T

P(Ty)m

T

P(Ay)m

© 00T U WS

10
11
12
13
14
15
16

1.3415037626
1.3804413572
1.4041128626
1.4201397131
1.4316975290
1.4404277508
1.4472546963
1.4527395436
1.4572426033
1.4610058138
1.4641976583
1.4669390746
1.4693191202
1.4714048275
1.4732476160

1.5537739740
1.4892228485
1.5069022259
1.5017251916
1.5035148094
1.5028716910
1.5031163748
1.5030208210
1.5030591603
1.5030435026
1.5030500001
1.5030472703
1.5030484295
1.5030479329
1.5030481473

1.5537739740
1.5370592754
1.5284545258
1.5233415461
1.5199401525
1.5175154443
1.5156994341
1.5142884861
1.5131606734
1.5122385423
1.5114705290
1.5108209763
1.5102644390
1.5097822725
1.5093605030

Notably, both p(Am)% and p(T2m)ﬁ are monotonically decreasing in m. In
contrast, p(Am_l)% and p(TgmH)ﬁ are monotonically increasing in m,
that p(Tay,)2% gives better upper bound than p(A,,)w. That p(TgmH)Wlﬂ
are lower bounds is conjectured. If they were, then p(']I'm)% would yield a
very sharp estimates.

§ 2.4 More symbols on larger lattice

As mentioned in the introduction, many physical and engineering problems
involve many (more than two) symbols and larger lattices. Therefore, the
results found in the previous sections must be extended to any finite number
of symbols p > 2 on any finite square lattice Zgx9 ;>1. The results are only



72

Pattern Generation Problems

outlined here, and the details are left to the readers. Proofs of theorems are
omitted for brevity.
For fixed p > 2 and [ > 1, denote by

(2.4.1)

q=p .

The horizontal and vertical transition matrices are given by

(2.4.2)

and

(2.4.3)

respectively.
Now, A, and B, are related to each other by

(2.4.4)

where

(2.4.5)

and

(2.4.6)

Ay

B,

AQI

A2;a -

B, =

ay 1
a2 1

Ag21

Q1.2
2.2

Qg2 2

bii bip

boi  bap

bq271 bq272

A2;1
A2;q+1

A2;q(q—1)+1

ba,l

ba,q—i—l

ba,q(q—1)+1 ba,q(q—1)+2

B2;1
B2;q+l

Bag(g-1)+1

A2;2
A2;q+2

ba,2
ba,q+2

B2;2
B2;q+2

a17q2
a27q2

g2
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where
Qa1 Qe 2 e Qq g
(@4T)  Bye=| e e
Ga,q(g—1)+1  Qag(g-1)+2 " Qa,g?

respectively, where 1 < o < ¢?. The column matrices Zx; and I@;, Ay and
B, are defined as in (3.2.2) and (3.2.3). For higher order transition matrices
A,, n > 3, are defined as

An;l An;2 e An;q
A A, A,
(248) An = ,.q—i-l ,‘q+2 .,211
An;Q(q—1)+1 An;(q—l)q+2 te An;q2
where
(2.4.9)
ba,lAn—l;l ba,QAn—1;2 . ba,qAn—l;q
A B ba7q+1An—l;q+l bOé,Q+2An—1;q+2 . boc,2qAn—1;2q
ba,q(q_l)'f‘lAn—l;q(q—l)J,-l ba,Q(q—1)+2An—l;q(q—1)+2 e bOé,qun;qz

Rewriting the indices of A,,, as follows, facilitates matrix multiplication.

Anat Anpz o Ay
(2.4.10) A, = | A Aemo A
Awat Aviz + Avg
Clearly, A,,., = A,.j,;,, where
(2.4.11) a=a(j1,72) = q(j1 — 1) + jo.

For m > 2, the elementary pattern in the entries of A" is given by

A A A

nij1j24inig2gs N5 JmJm+1

where js € {1,2,---,q}.
The lexicographic order for multiple indices

Ims1 = (J1J2 - JmIm+1)
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is introduced by

(2.4.12) X(Ts1) = 14> " (i = 1).

=2

Specify
AR e = Anjijp Anigags - A

m,n;a N JmIm+17

where o = (1, jm1) satisfies (3.4.6) and k = x(J,,11) is as given in (3.4.7).
Based on this arrangement, A" can be written as

Am,n;l Am,n;2 e Am,n;q

A™ — Am,n;q—i—l Am,n;q—i—Z e Am,n;2q
n . . . )

Amm;q(q—l)+1 Am,n;q(q—1)+2 T Am,n;q2

where
qul
k
Amm;a = E :ASn,)n;a‘
k=1

Moreover, X, n.a = (Aﬁ,lf?n;a)t, where 1 < k& < ¢™ ! and X, .0 is a ¢!
vector that comprise all elementary patterns in A,, ,,.. The ordering matrix
X of AT is now defined as

Xm,n;l Xm,n;2 T Xm,n;q
Xm,n;q-‘,—l Xm,n;q+2 e Xm,n;2q

Xm,n = . . . s
Ximniga-0)+1 Xmmnglg-1+2 = Xmpg2

and X, .11, can be reduced to Xs,. 3 by multiplication with connecting
matrices Cy,.q. 3. The connecting operator C,, is defined as follows.

Definition 2.30. For m > 2, define

C1m;1,1 C1m;1,2 te C1m;1,q2

C1m;2,1 C1m;2,2 te C1m;2,q2
Cn = . : . :

Cm;qQ,l Cm;q272 Cm;q27q2
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(2.4.13)
Sm;l,l e Sm;l,q Sm;q,l e Sm;q,q
Sm;lvq(q—l)Jrl T Sm;l,q2 Sm;qvq(q—l)Jrl e Sm;q,q2
Sm;q(q—1)+1,1 T Sm;t](q—l)Jqu Sm;tﬂl T Sm;qQ,q
Sm;q(q—1)+17q(q—1)+1 T Sm%‘l(q—l)-l-lﬂz Sm;qzvq(q—l)ﬂ to Sm;q27q2
where
(2.4.14)

Cmsa,s = ((B2ia)gxq © (®B?_2)qxq>qulxqm*1 o (Egm-2xqm—2® A2;ﬁ)qm*1><qm*1’
Like Theorem 2.4, C},41.0,3 can be obtained in terms of C,,., 3.

Theorem 2.31. For any m > 2 and 1 < o, 3 < ¢

Aa:1Cm;1,8 aa2Cme2, ot 0a;qCmig,8
Ao;q+1Cmiq11,8 Aoq+2Cm;q+2,8 o G0;2¢Cm2q,8
Cm—l—l;a,ﬁ - . . .
Aoig(q-1)+1Cmiq(g-1)+1,8  CGasg(q-1)+2Cmg(a-1)+28 "~ Aa;2Cmiyg2,
Denote by
(k) (k) (k)
Am,n—l—l;a;l 1?7))1,%4—1;0{;2 e Am,n—l—l;a;q
k k
A(k) o Am,n+1;a;q+1 Am,n+1;a;q+2 e Am,n+1;a;2q
m,n+Lia T : : - :
AW (k) AW
m,n+1;a;q(g—1)+1 m,n+1;a;q(g—1)+2 m,n+1;a;¢>

and Xy, 4108 = (Ailrf,)n+1;a;6)t where Ai:?nﬂ;a;ﬁ is a linear combination of

Ag»l@),n;% Now, Theorem 2.5 can be generalized to the following theorem.

Theorem 2.32. For any m > 2 and n > 2, let S,,., 3 be as given in (3.4.8)
and (349) Then Xm,n-i—l;oc;ﬁ = Sm;a,BXm,n;ﬁ-
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Chapter 3

Patterns Generation and Spatial Entropy in
Three-dimensional Lattice Models (I):
Ordering Matrices and Connecting Operators

§ 3.1 Introduction

Lattice dynamical system(LDS) arise naturally in a wide applications of sci-
entific models. See, for example, phase transitions [13], [14], [30], [37], [38],
[39], [40], [47], [48], [49], [50], biology [10], [11], [23], [24], [25], [33], [34], [35],
chemical reaction [8], [9], [20], image processing and pattern recognition [18],
[19], [20], [21], [22], [27]. In cellular neural networks, much attention focus
on the complexity of the set of all global patterns, in particular in its spatial
entropy [1], [2], [3], [4], [5], [6], [7], [15], [16], [17], [30], [31], [32], [41], [42],
[43], [44], [45], [46].

In a one-dimensional case, spatial entropy A can be exactly computed
by a associated transition matrix T, i.e., h = log A(T), where A(T) is the
maximum eigenvalue of T.

For two-dimensional situations, [1] develops a systematical approach for
discovering higher order transition matrix T,, and the spatial entropy h can
be obtained by computing the maximum eigenvalues of a sequence of these
transition matrices T,,. For a class of admissible local patterns, i.e., for a
class of Ty, the limiting equation to p* = exp(h(Ts)) can be exactly solved
through the recursive formulae of p(T,). However, T, is a 2" x 2" matrix,
it is usually quite difficult to compute p(T,) when n is larger. [5] derives
the connecting operator to resolve these difficulties. Indeed, [5] yields lower-
bound estimates of entropy by introducing connecting operators C,,, and
upper-bound estimates of entropy by introducing trace operators T,,.

Our interest in this study is to develop a general approach for investigating
three-dimensional pattern generation problems, i.e., extends works [1] and
[0] to three-dimensional case. And this study focus on ordering matrices of
patterns and connecting operator in three-dimensional case. The topic of
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trace operator will be appeared in [7].

More precisely, let S be a finite set of p > 2 colors where Z* denotes the
integer lattice of R®. Denote U : Z* — S. And the set of all local patterns
ON Zin,y sy xms 15 denoted by

Zm1><mz><mg = {U|Zm1><m2><m3 U e Z?J}

where Zp, xmyxms = {(a1,00,03) 0 1 < a; < my, 1 < i < 3} beam X
mo X mg finite rectangular lattice. For simplicity, two colors on 2 x 2 x 2
lattice Zayaxo are considered here. Given a basic set B C Yoyox2, the spatial
entropy can be defined as

log ' o xma (B
(3.1.1) BB = Gim 08Tmexmem(B)

mi1,m2,m3—00 mqimeomms

where Iy, ximg xms (B) is the number of distinct patterns in 3, xmg xms (B) and
Yy xmaxms (B) s the set of all global patterns on Zu,, sms,xms (B) which can be
generated by B, as in [17]. Motivated by [4], there are six different orderings
such as in (3.2.1) and according to the different ordering [w] the ordering
matrix A,.oxax2 for Xoyoxe can be introduced. Without loss of generality, we
take the example A, .0.049 as in (3.2.9) and the other cases are similar. Use
[z]-ordering on Zjyxm,x2 (3.2.26), the recursive formula of ordering matrix
Ay oxmyx2 for Yoy, «a can be obtained. Then, convert [z]-ordering into [Z]-
ordering on Zjxm,x2 such as (3.2.27) enable introducing ordering matrix
Az.9xmsx2 for Xoyxm, 2. The recursive formulae of ordering matrix Az.om, xms
for Yosmyxms also be found through the [Z]-ordering on Zi«m,xms such as in
(3.2.28). The recursive formula for Az.oxm,xms imply the recursive formula
for the associated transition matrix Ts.9xmyxms Of Laxm,xms (B) such as the
Theorem 3.8 and Theorem 3.13, which enabling us to compute the maximum
eigenvalue of Ts.2xm,xms 1O get the spatial entropy such as in the Theorem
3.13. However, we hope to produce some estimations in spatial entropy h(B).
Then, for fixed my, mo < 2, the my-limit in (3.1.1) is studied, i.e.,

1
(3.1.2) lim — log |A} |

ma—00 M T;2XmaXms3

is considered. So the next task is to investigate of (3.1.2). As in (3.4.6) and

(3.4.7), A;’;’%mmg;a is called an elementary pattern of order (mq,ma, ms)

and is a fundamental element in constructing Aé@nl’m%mg;a in (3.4.7). We

define X;.m, my.ms as in (3.4.8) and (3.4.9) which is represented to reward sys-
tematically these elementary patterns. We introduce Cg.nymym, @s 3.17, and

. : . (k) ()
use it to derive a recursive formulae for A@;mm%(m3 1) and Az o an
as in 3.20.
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The recursive formula (3.4.32) immediately yields a lower bound on en-
tropy such as in 3.4.2. Equation (3.4.55) implies h(A,.2x2x2) > 0, if a diagonal
periodic cycle applied, with a maximum eigenvalue in (3.4.55) larger than 1.
This method powerfully yields the positivity of spatial entropy, which is hard
in examining the the complexity of patterns generation problems.

The rest of this paper is organized as follows. Section 3.2, we derive a
recursive formula to obtain the ordering matrix A;.9xm,x2 fOr Xoyim, 2 from
A;9x0x2. Convert the ordering [x] into [2]. Then, construct the similar recur-
sive formula for ordering matrix Az.2xmyxmg from Az.oxm,x2. Section 3.3 we
derives the recursive formula for the associated higher order transition ma-
trices Ts.2xmgxms from Tyhoxoxo. Section 3.4 derives the connecting operator
C,,, which can recursively reduce higher elementary patterns to patterns of
lower order. Then, the lower-bound of spatial entropy can be found by com-
puting the maximum eigenvalues of the diagonal periodic cycles of sequence

Si;mg;mlm-

§ 3.2 Three Dimensional Patterns Generation Problems

This section describes three dimensional patterns generation. Let S be a set
of p colors, Zm, xmyxms be a fixed finite rectangular sublattice of Z3, where
Z3 denotes the integer lattice on R?® and (my,ms, m3) a 3-tuple of positive
integers. Functions U : Z3 — 8 and Uy, xmyxms © Loy xmaxms — S are called
global patterns and local patterns on Z,,, xm,xms respectively. The set of all
patterns U is denoted by Xp = SZa, i.e., X, is the set of all patterns with
p different colors in 3-dimensional lattice. For clarity, we begin by studying
two symbols, i.e., S = {0,1}. There are three coordinates, let x-, y- and
z-coordinate represent the 1st-, 2ed- and 3rd-coordinate respectively. There
are six orderings [O] ordering could be represented as follows:

2] : 1 = 2 = 3],
EM SR
z — - )
(3.2.1) @ - 1] = [3] = [2],
g 2 = [3] = [1],
Z 8 = 2 = [,

On a fixed finite lattice Zyy, sxmyxms, We firstly give an ordering [O] = O, xmy xms
ON Ziny xmsyxms Which belongs to any one of above orderings on Zi,, xmyxms

by (O] = [i] = [5] - [F]

(3.2.2) O(ay, az, a3) = mjmy (o — 1) + my(a; — 1) + ay,.
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The ordering [O] on Z, xmyxms can now passed to X, wmyxms- Indeed for
each U = (Uay as,05) € Limy xmyxms, define

O(U) = OmlxmngS(U>
m; My my o
(3.2.3) = 14 S S Unanas Om

a;i=1a;=1ap=1
where

(3.2.4) Q05— gmim (mi—ai)+my(mj—aj)+(mg—ag)
15115, T

U is referred to herein as the O(U)-th element in ¥,,,, «m,xms by ordering [O].
By identifying the pictorial patterns by numbers O(U), it becomes highly ef-
fective in proving theorems since computations can now be performed on
O(U). For example, the orderings on Zsyayo could be represented as follows:

/ v
[x]-ordering [z]-ordering
7 =z Ve
—99 98
9
[y]-ordering [y]-ordering
(575 (57T
Wy L] Py L]
1 Ty
[z]-ordering [2]-ordering

3.2.1 Ordering Matrices

Fixed 1 < a; < my, for 1 X my x m3 pattern U = (Un,ap0s), 1 < ag < My
and 1 < ag < mg in Xyxm,xms, under the ordering [z] pattern U is assigned
the number

ms  ms3
(3.2.5) iy = 2(U) =1+ Z Z ual,az,asxi:zfz’%a’

az2=1 az=1
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where oy means the aq-th layer in z-coordinate. As denoted by the 1 x mqy X
mg pattern

Uay1mg | UYai12ms o Uaymams
(3-2-6)ax;1><m2><m3;ia1 =

U112 Uny 22 T Uayma?2

Uny11 Uny21 T Uaymol

In particular, when my = 2 and m3 = 2 as denoted by Q1% 2% 2 5 where
(327) ial =1 —+ 23ua111 + 22ua112 + 2ua121 + Uay22

and

Uay12 | U122
Uqy11 | Ua21

Az 1x2X 200, —

A 2 x 2 x 2 pattern U = (Un,as05) can now be obtained by [z]-direct sum of
two 1 X 2 x 2 patterns using [z]-ordering, i.e.,

p:2x2%2ivin =  Qz1x2x2:0; DB Ga:1x2x2;00

(328) Ui | W21 ,
/

Uz12| U222

a1 (U221

where i,, as in (3.2.7) and a; € {1,2}. Therefore, the complete set of 2°
patterns in ¥oyoxo can be listed by a 16 X 16 matrix A, .oxaxo = [ar2x2x2:14)
as its entries in

[ABEHE CMNSECOESE OEOE

290605009

e 270007000 | |
250605069 hgggf
=9-900-03-00-0 2594
ﬁ, J where 9 5 g '

It is easy to verify that

(3210) $(ax;2x2x2;i1i2) = 24(,é1 - ]') + 2.2’
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i.e., we are counting local patterns in Yaxoxo by going through each row
successively in (3.2.9). Correspondingly, A,.ox0x2 can be referred to as an
ordering matrix for Yo, oy2. A 2Xx2x2 pattern can also be viewed as [z]-direct
sum of two 1 x 2 x 2 patterns using [Z]-ordering, i.e.,

(3.2.11) Usoxox2iiiy = iy D gy
where
(3.2.12) g, = 14 22ug,11 4 2%Ug,21 + 2Ua,12 + Uay22, a1 € {1, 2},

such as in (3.2.5). And the ordering matrix Az.oy2x2 can be represented as

OEOS SECE 0800 SEC0E

S 8 e & &
e t t + +
=S @ @® © @&
T o & @
g + t + +
(32138 9 @ & & f
s @ f & & A @ 6 &
E sy & © @ I
@ -
3o o & » Ao
i @ @ O @ ghere B WO ®
It could be verified that
(3.2.14) #(ag5) = 2" (0 — 1) + ia.

Similarly, a 2 x 2 x 2 pattern can also be viewed as a [y|-direct ([g]-direct)
and [z]-direct ([Z]-direct) sum of 2 x 1 x 2 and 2 x 2 x 1 pattern, i.e.,

Qyjrje = Oyjp D Ay,

A5fs = Ogi D Gy

Azikike = Qziky SP Azikys

aﬁ;kAlkAz = aé;kAl © ai’;k}’
where
(3215)ja2 =1+ 23U1a21 + 22U1a22 + 2U2a21 + U202, A € {1, 2},
(3.2.16)70y = 1 + 22101 + 2%Usap1 + 2Uiays + Usay2, g € {1,2},
(3217 kas = 1+ 2%Un1as + 221205 + 2Usias + Usas, a3 € {1,2},
(3218) k‘a3 =1+ 23U11a3 + 22U21a3 + 2U12a3 + U245, O3 € {1, 2}
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A 16 x 16 matrix Ay;2><2><2 = [ay;2><2><2;j1j2] or Az;2><2><2 = [az;2><2><2;k1k2] can
also be obtained for Ygyox9, i.e., we have Ayoyox0 =

OG0 9090 G956 A9 _

g pe= R =R
2 == [ ] [ ] ==
% /ﬂ /5 /g /S
S [ ] S S
(3.2.19)5 T @ o 3 I IEIr]
% [ [ [ ] [ ] O ™ s
[ Bl
s =R - I ===
) & & & LS Y Sl
or Az;2><2><2
2 B8 = =8 =
% & S8 &
2 /&= &8 5 %8
c8 & S & 7 7
(3.2.20)g & @& 6 ® | -
s S8 8 © =2k =K. |
.-
s & 8 0 8 O & 0.
2,- - - - where = 8 E .

The relations between A,.2x2x2 must be explored, where w € {z,y, z, 2,9, 2}.
Before explaining the relations we denote column matrix and row matrix. Let
A = [a;;] be a m? x m? matrix, the column matrix A of A is defined by

Al =
p T T
(3.2.21) Ay Ay e Ag
1© 4@ 1@
A(mQ—l)mQ—l—l A(m2—1)m2+2 e Am4
At(j])uha =
A1 A2 T Ap2g
(3.2.22) A(m2+1)a A(m242)a T G@m2)a

A((m2-1)m2+1)a  A((m2-1)m24+2)a " Omiq
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wherel < o < m*.
And the row matrix A" of A is defined by

A —
S
(3.2.23) A A oAb,
A A0 A0
A(mz—l)mz-l—l A(mz—l)m2+2 Y Am4
AY =
Qo1 An2 o Aam?2
(3.2.24) (o (m2+1) (o (m2+2) T Qo2m?)
Qo((m2—1)m2+1)  Qa((m2-1)m242) "  Qam4

where 1 < a < m*. Therefore, from some observations, Aj9xoxo can be
represented by ay.; j, as

(3225) Ax;2><2><2 = Ag%x2x2‘

The remainder of this subsection is devoted to construct A;.oxmyxms from

Aj.9x2x2 by the following three steps, where Az.oym,xm,; represented the or-

dering matrix of Yoy, xms according to [z]-ordering generated from oy oyo.
Step I : Use [z]-ordering on Zixm,x2 by

2 14 | ...|2k | ... |2m2|2m,

(3.2.26) 1 | 3 | ... |2k-1] ... |2my3|2my1

y

and introduce ordering matrix Ag.oxm,x2 for Yoy, xo.

Step II : Convert [z]-ordering into [Z]-ordering on Zim,x2 by

mytl |my+2| .. mytk| ... |2m,

3.2.97
( ) z 12 k|.. |m

and introduce ordering matrix Az.oxm,x2 for Xoxm,xa.
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Step IIT : Define [z]-ordering on Zqxm,xms Dy

A
(me-Dma+1| (msDmz+2| 0 Imsmy-1| mzmy
(3.2.28) .
m2+1 m2+2 21’1’12-1 21’1’12
1 2 m2-1 my

and introduce ordering matrix Az.oxm,xms 0T 225ms xims -
To introduce A;.9xm,x2, define

Ay:2xmax 21z jomy = Qy;2x2x2:51jo Dly;2x2x2:50js D+ * Dy;2x2% 255y —15my
(3.2.29) = Ay DAy, D - D Ay,

where 1 < j, < 2% and 1 < k < my. Herein, a wedge direct sum & is used
for 2 x 2 x 2 patterns whenever they can attached together.
Now, Az.oxmyx2 can be obtained as follows.

Theorem 3.1. For a1y Mo Z 2, Z2><m2><2 = {ay;jm,,,jw}, where ay;j1j2,,,j2m2 is
given in (3.2.29). Furthermore, the ordering matrix A,.oxmyx2 = [ay3j1j2---jm2]
which is a 22™2 x 22™2 matrix can be decomposed into following matrices

Am;2><mz><2 = [Am;2><m2><2;j1]2m2 x2™M2 ,
where 1 < j; < 222, For fixed ji, jo, ..., jr € {1,2,...,22m2}
Agpxmax2ijijandn = [Aw2xmox2ijija.uin Imaxm
where 1 < jpy1 <222 and k € {1,2,--- ,mo—2}. For fixed j1, 72, ; Jmy—1,
A oxmax 21 o jmy 1 = (Qys2x1ms X214 dmy -1y | 272 X272
Where ay.0xmyx2.j1js...jm, 15 defined in (3.2.29).

Proof. From (3.2.15), tUa,asas can be solved in terms of j,,, i.e., we have

ja -1
(3230) ulagl = [ 223 ]7

ja —1- 23u1a 1
(3.2.31) Uz = [T =],

Jas — 1 — 23Up0p1 — 22U1a22]
2 M
(3233) 2052 = ja2 o 23u1a21 - 22”10122 - 2u20¢217

(3232) U201 = [
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where [ ] is the Gauss symbol. From (3.2.30) to (3.2.33), we have the following
table.

Jao 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Uy |0 00O 0 0 O0OO0OO0OT1T 1 1 1T 1 1 1 1
Uaye |00 0 0 11110 0 0 0 1 1 1 1
Up1 |0 O 110 O 1 10 0 1 1 0 0 1 1
Upe |01 0 1 0 1 01 0 1 O 1 0 1 0 1
For any my > 2, we have
m2
(3.2.34) g = 1+ Z (22(m2_a2)+1u1a21 + 22(m2—a2)ulaz2)’
as=1

m2
(3235) jm2;2 =1+ Z (22(m2—a2)+1u2a21 + 22(m2—a2)uZa22).

as=1

From above formulae, we have

bma1;1 = 2% (g1 — 1) + 201 (myt1)1 + Wimat1)2 + 1,

bmgt12 = 22 (fmy2 — 1) + 2Un(ma+1)1 + Uz(mat1)2 + 1.

Now, by induction on msy the theorem follows from last two formulae and the
above table. The proof is complete. O

Remark 3.2. By the similar method, the following relations ca be derived
but the detailed proof is omitted here for brevity.

(3.2.36) Az:2x2%ms (G225 2 xmi s ko Ky -1 kg J 2718 x 273
3 3
(3.2.37) Aymixax2 = [Qaoimyx2x2irin..im; _1im, J2m1 21
(3.2.38) Agaxaxms = [@z2x2xmskiks.. Ky 1hms 273 x273
(3-2-39) Az;m1><2><2 [af;m1x2x2;i1i2...im _1im ]27n1 x2m1
1 1
(3.2.40) Asoxmax2 = [Qg2xmax 21 o jmg - 1imy |22 x272

Next, [z]-ordering is converted into [Z]-ordering for Zi xm,x2. SIince Zjxm,xo =
{(1, 0, 03) : 1 < g < g, 1 < g < 2}, the position (az, a3) is the a-th in
(3.2.26), where
(3.2.41) a=2(as — 1) + as.

In (3.2.27), the position of (1, ay, ag) is the a-th, where

(3242) a = mg(Oég — 1) + Q.
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It is easy to verify

(3.2.43) @:m2a+(1—2m2)[a;1] + (1 — ma),
or

a=k if a=2k—1,
and

a=mo+k if a=2k,
1<k <ms.

Now, the ordering [Z] in (3.2.27) on Zjxm,x2 can be extended t0 Z1 xm, xms
by (3.2.28). For a fixed msy, [Z]-ordering on Zjym,xms is clearly one di-
mensional; it grows in z-direction. With ordering (3.2.28) on Zjxmyxms, for
U = (Uayasas) € Loxmyxms, denoted by

ms  ms3
(3244) %al =1+ Z Z ualazag2m2(m3—a3)+(m2—a2)’

az=1 az=1

where ay = 1,2. Then, we obtain

(3.2.45) (U) = 2m2™3 (1) — 1) + 4.
Now, let a;.;» = U = (Ua;azas), then we have new ordering matrix Agoxm,x2 =
@395y x 26175 ] TOT L2semy x2. The relationship between A.oxm,x2 and Ag:2xmsy x2

is established before constructing A;.ovmyxms from Az.oxm, <2 for mg > 3.

We firstly established a conversion sequence of orderings from (3.2.26) to
(3.2.27). Where P, denotes the permutation of Ny, = {1,2,---,2my} such
that Py(k+ 1) = k,Pi.(k) = k+ 1 and the other numbers are fixed. We also
denote P the permutation on Zjym,,x2 such that it exchanges k and k+1
and maintains the other positions fixed, i.e,

k+1 . | P | k .
: k| |- : . kE+1

(3.2.46)

Obviously (3.2.26) can be converted into (3.2.27) in many ways by using
sequence of Pj. Here, we present a systematic approach.

Lemma 3.3. For my > 2, (3.2.26) can be converted into (3.2.27) by the

ma(ma—1)
£ m2 22

following sequences o permutations successively

(P2P4'"P2m2—2)(P3P5"'P2m2—3)"'

3.2.47
(3.2.47) (PePess- Py ) -+ (P 1 P or) P,
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Proof. When my = 2 and 3, verifying that (3.2.47) can convert (3.2.26) into
(3.2.27) is relatively easy.
When mgy > 4, and for any 2 < k < msy, applying

(3.2.48) (P2 Py -+ Poyny—2)(P3Ps -+ Pony—3) -+ (PiPry2 - - Pamy 1)

to (3.2.26), then there are two intermediate cases:
(i) when 2 < k < [%2], then we have

(3.2.49)

o
7
7
T
;

I

where 0 < ¢ < mqy — 2k.
(ii) when [%2] +1 < k < my — 1, then we have

k41 my — k— fma —k+dmy — k4 s Py — 2ms

(3.2.50)

1 9 o k=1l ok ka2l o Pme—

When k = my in (3.2.50), we have (3.2.27). We prove (3.2.49) and (3.2.50)
by mathematical induction on k. When k=2, it is relatively easy to verify
that (3.2.26) is converted into

5 cee Py — 7”2712777,2

1 9 4 s Py — By — 4

by PoPy- -+ Pop,—o, .., (3.2.49) holds for k=2. Next, assume that (3.2.49)
holds for & < []. Then, by applying Pyi1FPrt2 - - - Pom,—x—1 to (3.2.49), it can
be verified that (3.2.49) holds for k41 when k+1 < [%2] or becomes (3.2.50)
when £+ 1 > [%2]. When k > [%2] 4+ 1, we apply Pri1Py3- - Papy—g—1 to
(3.2.50). It can also be verified that (3.2.50) holds for k+1. Finally, we
conclude that (4.27) holds for & = my. The proof is thus complete. O

By using Lemma 3.3, Az.oxm,x2 can be converted into Az.oxm,x2 by the
following construction. Let

(3.2.51) P =

o O O
o= O O
o O = O
_— o O O
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and for 2 < j < 2mgy — 2, as denoted by
(3252) PIE;ng;j = ]2j71 ® P ® ]227712*jfl7
where [} is the k x k identity matrix. Furthermore, let

]P)m'2><m x2 (P2m '2P2m 4t P2m :2m —2)
3.2.53)  mxms 22 2ma 2i2m2
( ) "'(P2m2;k"'P2m2;2m2—k)"'(P2m2;m2)>

2 < k < msy. Then, we have the following theorem.
Theorem 3.4. For any my > 2,
(3254> AgAc;2><m2><2 = ]P)tm;gxmzXgAgc;2><m2><2Px;2><m2><2-

Proof. From (3.2.41), in Zjym, 2 the position (as, a3) is the a-th in (3.2.26),
where a = 2(ap — 1) + a3. Define

(3255) ga =1 + 2ula2a3 + U200 5

1</ly,<4and1<a<2my For U= (Unaras) € Laxmsyx2, from Theorem
3.1 it can be denoted by ay.2xm,x2.j1js...jm, a0 by (3.2.15) for fixed 1 < ap <
mo we have

Jay = 1+ 23“1(121 + 22”1(122 + 2U20,1 + U2as2
= 2*(laay—1) + loa, + 1,

where 1 < j,,<16. Hence the relation between ay;,, and wy.e,,, 65, 18

Ay;1 - Qy2 o Qg3 Qyg w11 Wiz W1 Wag
Ays5  Qye  Qy7  Gyg | | Wiz Wig Wiz Wy
Qyi9  Ayi10 Q11 Ayi12 W31 W32 W41 W42
Qy;13  Ay:14 Q15 Qo6 W33z W34 W43 W44

Therefore, the pattern in ordering matrix Ag.oxm,x2 can be represented by
Ay:2xmaxjija.jmy  — Qi D Gyjo D -+ D Ay,
Wyse10s D Wystze, D v+ D Wyitn, 102,
= Wyt1s.. b, -
It is easy to verify that for any 1 < k < 2my — 1,
t
Png;kAx;2><m2><2P2m2;k

_ pt
- P2m2;k‘[wy§glz2---gkzk+1---z2m2]P2m2§k
= [Wystr2.. 0010021, ]

i.e., Pom,, exchanges ¢y and (41 in Ay.oxpm,x2. Therefore, from (3.2.53) and
Lemma 3.3, (3.2.54) follows. O
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Now, in Theorem 3.4, as denoted by
(3256) Ai;ZszX? = [ai;2><m2><2;iA1iA2]7

1< %1,%2 < 2my. And by Remark 3.2, Aj.oym,x2 could be represented by
Us25myx 21 ke, Where 1 < Ky kg < 22M2. The [#]-expression

(3.2.57) Agosmgxz = A7)

2;2Xma X2

for Yoxm,x2 enable us to construct Az.owmyxms fOr Xoxmyxms. Indeed, for
fixed mo > 2 and ms > 2, let

Agoxmoxmsiinia  —  Az2xmaxmaikikz..kmg
(3258) — a'z;2><m2 ><2;k1k2@a'z;2><m2 ><2;k2k3@ o @az;2><m2><2;km371km3 .

Therefore, by a similar argument as in proving Theorem 3.1 we have the
following theorem for Aj;.oym,xms. The detailed proof is omitted here for
brevity.

Theorem 3.5. By fixing my > 2 and for any mg3 > 2, the ordering matrix
Ajoxmyxms With respect to [Z]-ordering can be expressed as

(3259) Ai;2><m2><m3 - [A:E;2><m2><m3;k1]2m2 X2™M2

where 1 < k; < 2?2, For fixed 1 < ky, ko, -+, Ky < 22m2,

(3.2.60)  Asioxmaxmaikikaki = [As2xmoxmaskika--kikpy 1) 2m2 x2m2

where 1 < ki1 < 2% and 1 <1 < mg — 2. For fixed ki, ko, - - - s Kms—1,

(3.2.61) Agaxmaxmsikika-kmg -1 = | Gz2xmaxmsikka.. kg |
Where @..2xmyxmskiks...km, 1S given by (3.2.58).

Remark 3.6. Similarly, the following relations can be derived but the de-
tailed proof is omitted here for brevity.

Az;25ma xms (@25 xmiji oy J2m2ms x2mams
Ag;ml X2xms3 T [aé;ml ><2><m3;k1k2...km3 ] 2M1m3 x 2m1m3
Ay;ml X2xms3 [ax;ml ><2><m3;i1i2...im1 ]27”1’”3 X 2Mm1m3
Asimixmaxz = [@gimy xmy x2;j1j2...jm2]2m1m2 X212
Az;ml Xma X2 [ai;ml ><m2><2;i1i2...im1]27”1’”2 X 2112
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§ 3.3 Transition Matrices and Spatial Entropy

3.3.1 Transition Matrices

With the ordering matrices Az.9xm,xms fOI Xoyxm,xm; having been defined,
higher order transition matrices T;.2xm, xm; can now be derived from T,.o0x2x2.
As in the two dimensional case [1], assume that we have basic set B C Yayxaxo.
Define the transition matrix T,.ox2x2 = Tyaxax2(B) by

(3.3.1) Tooxax2 = [teax2x2iiria|2tx21,
where

t:c;2><2><2;i1i2 =1 Zf a':c;2><2><2;i1i2687
(3:3:2) =0 otherwise.

Then, the transition matrix T,.oxm,x2 1S @ 22mz 5 22m2 matrix with entries
t:c;2><m2 X2;11%2 where

lo2xmox2iiria =  ly2xmy X2;5172---Jma

mo—1

(3.3.3) =[] tvero2iin

k=1
Before Tg.axmyx2 is introduced, three products of matrices are defined as
follows.

Definition 3.7. For any two matrices Ml = (M;;) and N = (Ny,), the Kro-
necker product (tensor product) M @ N of M and N is defined by

For any n > 1,
N"=N@N®---®N,

n-times in N.
Next, for any two m X m matrices

P = (Py) and Q = (Qy)

where Pj; and ();; are numbers or matrices, the Hadamard product P o Q is
defined by

(3.3.5) PoQ = (P - Qij),
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where the product Pj; - Q;; of P;; and ();; may be a multiplication between
numbers, between numbers and matrices or between matrices whenever it is

well-defined.
Finally, product & is defined as follows. For any 4 x 4 matrix

my; MMy Moy Ma2

myz Mg Moz Moa
(3.3.6) M, = =

mg3y Mgz M4 M42

mg33z 134 M43 Maa

M2;1 M2;2
M2;3 M2;4

and any 2 x 2 matrix

(3.3.7) N = { N N } :

N3 Ny

where m;; are numbers and N, are numbers or matrices, for 1 <14, j,k < 4,
define

mu N1 miaNy mai Ny mgaNy
mi3Ng  mia Ny mozN3 MmNy
mz1 N1 mzaNy mg Ny myoNo
m33Ng  mzy Ny my3N3 mysNy

(3.3.8) M,y®N =

Furthermore, for n > 1, the n + 1 th order of transition matrix of My is
defined by
M, 11 = M} = MbOMo® - - - @M,

n-times in M. More precisely,

o My 0 (EME™Y) My o (GMEY)
M, = Mo®(@M5 ™) = [ My 0 (@Mg_l) Ms.4 0 (®M§‘1) }
(3.3.9)

muMn;1 m12Mn;2
mlgMn;3 m14MTL§4
mz1 My maa Mo
masMp.z M3y My

m21Mn;1 m22Mn;2
Moz Myz moaMua | [Mn+1;1 Mn+1;2:|

m41Mn;1 m42Mn;2 Mn+1;3 Mn+1;4
m43Mn;3 m44Mn;4

where

M, = QM; " = { M Mo ] :

M,.s M.y

Here, the following convention is adopted,

OMY = Egys.
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From Theorem 3.1, we can obtain results for T,.0xm,x2 as T, in Theorem
3.11in [5]. Indeed, we have

Theorem 3.8. Let T,.o.2x2 be a transition matrix given by (3.3.1) and
(3.3.2). Then, for higher order transition matrices Ty.oxm,x2, M2 > 3, we
have the following three equivalent expressions as follows:

(I) Ty2xmyx2 can be decomposed into my successive 4 x 4 matrices

T:c;2><m2><2 = [Tx;2><m2><2;j1]4><4a

where 1 < 7,16. For fixed 1 < ji, 72,...,Jx < 16,

TSL‘;2><T'"L2><2;j1j2‘..j,c - [T1'§2><m2><2§j1j2---jkjk+1]4><4’
where 1 < jpiq16 and 1 < bk < mg — 1. For fixed ji,72,.. ., Jmp—1 €
{1,2,...,16},

Tx;2Xm2x2;j1jz---jm271 = [ty;2szx2;j1j2---jm2]4x4>
where ty.9xmy x2;j1ja...jm, 15 defined in (3.3.3).
(II) Starting from

P]Tgc;2><2><2 = [Tm;2><2><2;j1]4><4
and
Troxax2,i = [ty:2x2x2i1ja)ax4,

for my > 3,T425m, x2 can be obtained from T.ox (m,—1)x2 by replacing Th.2x2x2.5,
with
(3.3.10) (Tri2x2x2;5, )axa © (Tasax2x2)axa-

(III) For my > 3,
Tooxmox2 = (Tax(ma—1)x2)220ma—1) y20ma—1)
3.3.11 z;2xms 212X (ma—1)x2)2Am2 =D x22(ms
( ) O(E22(m272) X Tx;2><2><2)22m2 x22m2 4
where E,. is the 2 x 2F matrix with 1 as its entries.
Proof. (I) The proof is to simply replace Ay.9xmyx2:j1js...jx A Qa25xmo %251 4051
by Tioxmox2:j1js.je A Ta:2xmox2:j17s...j, 1 Theorem 3.1 respectively.
(IT) follows from (I) directly.
(IIT) follows from (I), we have Trowmox2 = [Teaxmax2.1)s 1 < j1 < 2% And
by (I), we get following formula
P]Pac;2><mz><2 - [a'y;2><2><2;j1j2T:c;2><(m2—1)><2;j2]
- (T:c;2><(m2—1)><2)22(MQ*1)><22(MQ*1)®[E22(M2*2) & Tm;2><2><2]-

The proof is complete. O
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Remark 3.9. As mentioned in Remark 3.2 we have the following formula
but the detailed proof is omitted for brevity.

Tiaxaxms = [tzaxaxmskika. kg 1kmg|2m3 x2ms
Ty;ml X2x2 = [t:c;ml><2><2;i1i2...im1,1iml]27”1 X 21
Tyoxaxms = [tzaxaxmskika..komg 1kmg 273 x2ms
T x2x2 [t2:m, X2X 2. imy —1imy Jam1 xam
T2;2Xm2x2 = [tﬁg§2><m2X2§j1j2---jm271jm2]2m2 x2m2

Now, the transition matrix Tj;.2xm,x2, With respect to ordering matrix
Aj.95myx2. Additionally, by using Theorem 3.4, we have

Theorem 3.10.

¢
(3.3.12) Ta’c;2><m2><2 - ]P)x;2><m2><2’]rx;2><m2 ><2Px;2><m2><2-

Proof. The proof is to simply replaced ay.2xmsyx2:j1js...jmy PY Ly:2xmax2;1ja...jms
in Theorem 3.4. ]

By applying Theorem 3.5, transition matrix T;.oxm,xms can be obtained
from Tj.0xmyx2. According to (3.2.57), we obtained the transition matrix

(3.3.13) T:?:;zxmzx2 - [T:?:;2><m2><2;k1]
and
(3314) Ti;2><m2><2;k1 == [tz;2><m2><2;k1k2]'

Therefore, we have

Theorem 3.11. Let Ts.0xm,x2 be a transition matrix given by (3.3.13) and
(3.3.14). Then, for higher order transition matrices Ts.20xmyxms, M2 > 3, We
have the following three equivalent expressions as follows:

(I) Ti2xmyxms can be decomposed into mg successive 22 x 2™2 matrices:

T:f:;2><m2><m3 = [Tzf:;2><m2><m3;k1]2m2 X2M2,

where 1 < ky < 222 For fixed 1 < ky, ko, ... ki < 22™2,

Ti‘;2><m2 xmg;ki1ko.. .kl — [Ti‘;2><m2Xmg;klkz...k5k5+1]2m2 X2M2

where 1 < kypy =1<222 and 1 <1 < mg — 2,

ch;2><m2><m3;k1k2...km371 - [tz;2><m2Xmg;klkz...km3]2m2 X2M2 4
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where 1 < k,,, <2?™ and by (3.2.58)

maz—1

(3315> tz;2><m2><m3;k1k2...km3 - H tz;2><m2><2;klkl+1-
=1

(II) For any ms > 3, Ts2xmyxms can be obtained from Ti.oum,x(ms—1) bY
replacing T%.9xmyx2:k, With

(3.3.16) (Th2xmax 25k J2mz xam2 © (Ta2xmy x2)2ms xams .

(III) Furthermore, for ms > 3 we have

(3 3 17) T:?:;2><m2><m3 - (Ti;2><m2X(mg—l))2m2(7”3*1)><2m2(’"3*1)
O(E2m2(m372) ® T;@;Qsz X2)2m2(7n371)X2m2(m371).

The proof closely resembles that when proving Theorem 3.1 and Theorem
3.8. Details of the proof are omitted for brevity.

Remark 3.12. As mentioned in Remark 3.6, we also have the following
formula but the detailed proof is omitted for brevity.

T:25mo xms ty:2xma xmssjiga...my | 271273 x2M2mg

Tg};ml X2xXm3 té;ml X2xmg;kika...kmg ]2’”1’”3 X 2m1m3

Temyxmax2 = [tgmyxmax2ijijo...jmy)2mm2 x2m1ma

[
[
Tyimyxaxms = [tommix2xmasiia...im, J2m1ms x2mims
[
[

Tz;ml X1y X2 t:?:;ml XM X 251192 .. imy ]2m1m2 X 2mM1m2

Finally, the spatial entropy h(B) can be computed through the maximum
eigenvalue A, , of Ts.9xm,xms- Indeed, we have

Theorem 3.13. Let A;.2.m,.m; be the maximum eigenvalue of T4z.2xm0 xms
then

(3.3.18) h(B) = lim 8/ #2mams

m2,m3—00 meoms
Proof. By the same arguements as in [16], the limit (3.1.1) is well-defined
and exists. From the construction of T;.2xm,xms, We observe that for my > 2
and mg > 2,

Pi§m1><M2><M3(B) = Z (Tgé;:nzxmg)ij

1<i, j<2mems

= Jj(’]rgfé;’}nzxmg)
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As in one dimensional case, we have

—1
. logﬁ(Tgéxmzxmg)

11m
mi—00 mq

= log )\i;Q,mz,mga
e.g., [1]. Therefore,
log I';. .
h(B) — hm Og x,mlxmgxmg(B)

m1,ma2,m3—00 mymsaims
1 10g Fi;ml Xmg Xms3 (B))

= lim lim
m2,m3—0o0 119713 M1—00 maq

10g >\i'2 ma,m
— llm 32, TI2,TI3
m2,m3—0o0 meoms

The proof is complete. O

Remark 3.14. Let >‘$;27m27m37 >‘Q;m172,m37 )‘y;ml,lmsv >‘2;m1,m2,2 and )\Z§m17m272
be the maximum eigenvalue of Ty.2xmy xms»> Lgimi x2xmss Lymix2xms» L2y xma x2
and T..,,, xm,x2 respectively, then it can be shown that

h(B) — hm log )\m;2,m2,m3
m2,m3—00 moms

— L 98 Agimi2ms
mi,m3—00 mimsg

_ 111’[1 IOg )‘y;m1,2,m3
mi,m3—00 mims

- lim lOg )\2;m1,m2,2
mi,m2—00 mq1Mmeo

_ lim log )\Z§m17m272
mi,m2—00 mime

but the detailed proof is omitted here for brevity.

3.3.2 Computation of ), , and entropies

From the last subsection, we obtained a systematic means of writing down
Ti:95msxms from Troxoxs. Asin a two dimensional case [1], a recursion for-
mulas for A;.2 m,.ms can be obtained in special structure. To demonstrate the
methods developed in the last subsection, we provide an illustrative example
in which Ts.2xmyxms a0d X392 m, ms can be derived explicitly. More complete
results will be appeared later.
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Denoted by
1 1 1 1
(3.3.19) G—[l O}Qnd E—Eg—[l 1},
and let
(3 3 20) T:c;2><2><2 ®(G X E)2a

— (GOE)®(G®E).
Proposition 3.15. Let T,.2x2x2 be in (3.3.19) and (3.3.20). Then,

(Z) P]ng;2><m2><2 = ®(G ® E)m27
(3321> (ZZ) P]Pfc;2><mz><2 = (®G)m2 ® (®E)m2’
(i11)  Tioxmexms = (@G)™2M~Y @ (QE)™.

Furthermore, for the maximum eigenvalue Az, ms Of Ti:2xmyxms, We have
the following recursion formulas:

(3322) >\:%;2,m2+1,m3 = 2gm3_1)\§3;27m2,m3
and
(3323) )\i;27m27m3+1 = gmz)\:?:;2,m2,m3

for msy, ms > 2 with
(3.3.24) Aip22 = (29)°.
The spatial entropy is

(3325) h(T:p;2><2><2) = logg,

1+V5
2

where g = , the golden-mean.

Proof. The proof is only described briefly, and the details are omitted for
brevity.
(i) can be proved by Theorem 3.8 and induction on m. Indeed, by (3.3.11),
we have

Tm;2><3><2 - (Tm;2><2><2)4><4 o (E22 ® P]Fgc;2><2><2>4><4

= GRIERGRE)jx40(EQRER®R(GRFE®G® E))ix4
(GoE)® (EoE)®(GoG)® (Exzo (E®GQ E))axs

= ®(G®E).
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Assume that Tyox(m,—1)x2 = @(G ® E)™ ! Then by (3.3.11) again, we
have

T$52><m2><2 ( $2><(m2 1 ><2) (®(E)2(m2_2) b2y P]Fac;2><2><2))
== (®(G ® E) )227n2 2y 92mg—2 O ((@(E)m2_2) ® (®(G X E)2>>227n272><22m2—2
= (®(G ® E)m2 2® (G (029 E))22m2 2 92mg —2
o (®(E ® E)m2_2 ® (G &® E) (%9 (G & E))22m272><22m272
[(GoE)® (EoE)™?®(GoG)®(Eo(E®G® E))
(GRE™ 2 (GRE)®(G®E)
(G ® E)™.

®
®
®

(ii) The following property for matrices is needed and the detailed proof
omitted: For any two 2 x 2 matrices A and B, we have

(3.3.26) P(A® B)P = B® A,

where P is given in (3.2.51). We also prove in (3.3.21) by induction on mso.
When my = 2, by Theorem 3.10,

T£;2><2><2 = P;;QXQXQT:B;2X2X2P:E;2X2X2

(P4;2)tT:E;2><2><2P4;2
(LOPRL)((GRE)®(GRE)(I,® P I,)
G®(P(E®G)P)®E

= GRGRERFE

by (3.3.26).
Now, assume that (3.3.21) holds for my — 1, i.e.

Tasox (ma-1)x2 = ((G)™71) @ (®(E)™ ).
Then

Tx 12X Mo X2

t
- ]P)x 2Xm2X2Tx;2Xm2 ><2]P)x;2><m2><2

- [(P2mz,2p2mz;4 o 'P2M2;2m2—2)(P2m2;3P2m2;5 o 'P2m2;2m2—3) T (P2mz;m)]t
Tx;2><m2><2[(P2m2;2P2m2;4 o 'P2m2;2m2—2)(P2m2;3P2M2;5 o 'P2M2;2m2—3) e (P2m2;m)]
= (Pamaim) * + (Pomoi3Pomass * + * Pomyioma—3)[(Pamas2 Pomoa =+ Pomoi2m,—2)
(G @ E)™)(Pamy2 Pamaa = Pomo2ma—2)| (Pomia Pomis - Pomiama—3) = (Pamim)
= (Pamim) -+ - (PomiaPomis - - - Pamiam,—3)[G @ (9(G @ E)™ ") © E]
(P2m;3P2m;5 e P2m;2m2 3) (P2m m)
= G @ {(Pa(mao—1):ma— 1) “(Pamy—1)2Patms 1)+ * = Po(ma—1)2(mz—1)—2)[©(G @ E)™ 7]
(Pa(ms— 0 2 Po(my 134 Pagmy—1)2(ma—1)-2) * - (P2m2 Lma—1)} @ F
=G® ( ;2% (ma— 1)X2Tm,2><(m2 1 ><2]P)m;2><(m2—1)><2) ®F
=GO Tioxme-1)x2 @ F
=G (@G)™ ) (@E)™= )b
= (®(G)™) @ (®(E)™).
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(iii) For a fixed my, we prove the results by induction on mg > 2. Assume
that (3.3.21) holds for mg — 1, i.e.,

Tipxmax(ms-1) = (R(G)" 7)) @ (R(E)™).
Then, by (3.3.17), we have

P]Fg%;2><m2><m3 = P:|T322><mz>< (m3—1) ((®(E)m2(m3 2)® :E2><m2><2)

(@(G)metms= 2)®(®( )"™2)) o ((@(E)™s2) @ (&(G)™) @ (®(E)™))
(®(G)™=m72) @ (®(G)™) @ (R(E)™)

(@(G)m=ms=V) @ (R(E)™).

As for maximum eigenvalue A;.2 m,.ms, verifying (3.3.24) is easy. To show
(3.3.22) for fixed mg, by using (3.3.21), we have

T:?:;2><(m2+1)><m3 — (@(G)(mz—i—l)(ma—l)) ® (®(E)m2+1>
= (@(@G)™ ) @ ((G)™rmsY) @ (@(B)™) @ B
- (®(G)m3_l) ® P]I‘a”c;2><mz><mg ® E,

which implies

o n—1
>\i;2,m2+1,m3 - 29 >\1%§27m27m37

see [12].
Similarly, for a fixed my, to prove (3.3.23), by using (3.3.21) again, we have

P]Pfc;2><mz><(m3-‘,—1) = (®(G)m2m3) ® (®(E)m2)
= (®(G)™) @ ((G)™m=) @ (2(E)™)
= (®(G)™) @ Ta2xmoxmss

which implies

>\i;2,m2,m3+1 = gm2>\5c;2,m2,ms-
Finally, (3.3.25) follows from (3.3.22), (3.3.23) and Theorem 3.13. The proof
is thus complete. O
§ 3.4 Connecting Operator

As stated in the introduction, in this section we will introduce the connecting
operator and to use it to derive a recursive formula between an elementary
pattern of order (m,n). And use it to yield a lower bound on entropy.
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3.4.1 Connecting Operator in z-direction

This subsection derives connecting operators and investigates their proper-
ties. For brevity, we just discuss the connecting operator in z-direction and
the other cases are similar and we will state them in Remarks follows. For
clarity, such as in the former section two symbols on lattice Zsoyoxo are ex-
amined first.

As state in Theorem 3.5, the ordering matrix Az.oxm,xms can be rep-
resented by Agzovxmyxmgia, Where 1 < a < 22m2 g g 2m2(ms—1) x gma(ms—1)
matrix.

For matrices multiplication, the indices of Aj.9xm,xms are conveniently
expressed as

Ai;2><m2><m3;11 Ai;2><m2><m3;12 e Ai;2><m2><m3;12m2
T;2XmaoxXms3;21 Ai;2><m2><m3;22 e Ai;2><m2><m3;22m2
(341
Ai;2><m2><m3;2m21 Ai;2><m2><m3;2m22 e A;ﬁ;2><m2><m3;2m22m2 .

CleaIIY7 Ai;2><m2><m3;a = Ai;2><m2><m3;51,827 Where o = a(61762) = 2m2(61 -
1) + (5. For my > 2, the elementary pattern in the entries of A’}

T;2XmaXms

is represented by Az.ox2x2,6 0 Az 2x2x2:885 * *  A22x2x2,8pn, B, 11 Where B, €
{1,2,---,2™m}. A lexicographic order for multiple indices I,,,, 11 = (5152 * * BBy +1)
is introducing, using

mi

(3.4.2) K(Iml-i-l) =1+ Z 2m2(m1—r) (ﬁr _ 1).
r=2

Now, Afckin +1my.mse cOUld be represented by

(343> A{)AS;QXmQXmg;ﬁlﬁzAi;QXmQXmg;ﬁzﬁg e Af;szQ Xmg;,@ml,@m1+17

where

(344)  a=a(B Be + 1) =276 — 1)+ B
and

(3.4.5) k=K(Ln,+1)

is given in (3.4.2). Therefore, AT} . can be expressed as

(346) [Ai;m17m27m3;a]2m2 X2M2
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where 1 < a < 222 and

gmag(my—1)
_ } : (k)
(347) Ai;ml,mg,mg;a - Azf:;ml,mg,mg;a'
k=1
Furthermore,
— (A% t
(348) X:?:;ml,mg,mg;a - ( i;ml,mz,mg;a) )

where 1 < k < 2m2(m—1) Xiomi mamsia 1S @ 2m2(m=1) column vector that
consists of all elementary patterns in Ag.n, mymga. The ordering matrix

mi .
Xi;ml,mz,m:; of Af;2><m2><m3 is now defined by

(349) [X:i:;ml,mg,mg;a]2m2 X2M2

where 1 < o < 2?2, The ordering matrix Xg.m, my.ms allows the elemen-
tary patterns to be tracked during the reduction from Aggxmzx (ma+1) 1O
roxmyxms- Lhis careful book-keeping provides a systematic way to gen-
erate the admissible patterns and in Section 3.4.2, lower-bound estimates of
spatial entropy.
The following simplest example is studied first to illustrate the above

concept.

Example 3.16. For my; = 2, my = 3, mg = 3, the following can be easily be
verified;

(3.4.10) A ans = [As23.300 |25x28,
where 1 < ay < 2 and

23
(3.4.11) Ap23 301 = Z Af?f%,?),?:;aﬂ
k=1

and for fixed a; and k the represented pattern of Agf%vg’g;al are as the following
form

(3.4.12) <

ay @12 a3

a3 ko ks

14 ays 16
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If we defined the red symbol is equal to 1, white symbol is equal to 0, then
o) = 25a11 —|—24Oé12 —|—23Oé13—|—220é14—|—20é15—|—0é16+ land k = 22]{31 +2/€2 +k’3+ 1.
Therefore

(3.4.13) X§:2.3300 = (Ag?%,s,?,;al)tv

where 1 < k <23 and 1 < a; < 26. Define

k
(3414) X:i:;2,3,3;a1;a2 = (Af?:;%,?),?);al;ag)t?

where 1 < k < 2% and 1 < oy, ap < 29 and the represented pattern is

A% _

i‘;2,3,3;0¢1;a2

X X X
X X x
X X x
(3.4.15) o o
X X X
[N g5 a6
ayy a12 ays
ky ko k3
[on a5 a6

Hence we get, for example

(3416) Xfc;273,3;1;1 - Si;m3;2,3;11 . X:?:;2,3,2;1>
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and the represented patterns of Si.ng.2.3.11

AR B B R N R
LMARARARLRLRLRRR
LMARLARARLRILRRRRR
AR ARARLRLRLRRR
MARLARARLRLRRLRRR
LMARARARLRLRLRERR
LMARLARARLRILRLRRR
ARARRRLRAR LR AR

(3417) 923 %923 -

The above derivation indicates that X;.233.4,:0, can reduced to X;.2 3 3.0,
via multiplication with connecting operator Si.ms:2.3:01a,- Lhis procedure can
be extended to introduce the connecting operator Sg.ma:mims = [Samsimima:aias)s
where 1 < ay, ap < 222 for all my > 2, my > 2.

Definition 3.17. For m; > 2, my > 2, define

(3.4.18) (Ci;m3;m1M2)22m2 x22m2 = (ngny,;mlmz)?mz x22m2
where the row matrix ngns;mlmz of Simgimims 1s defined in (3.2.23) and

(3.2.24). And

(3419) Cj;mg);mlmg;ilig
= [(Tz;2><m2><2;i1>2m2xzmz o (Tz;(ml—l)xmzx2)27nzx2m2]2(’”1*1)’”2 x2(m1—1)my

© (E2(m1*2>m2 ® ((Tg%XmQXQ);(iCQ))2m2X2m2 )2(’"1*1)"12 x 2(m1—1)mgy

where (T')

Z;2Xma X2

){&) is the aa-th block of the matrix (Tg%xmxz)(c), ("JI“Z%XM2 <2)©

, - (r) (r) , :
is the column matrix of T 5. ,,,, v and T 5., .5 is the row matrix of T..2xm, x2-
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Remark 3.18. With the similar method, we also can defined the following
connecting operators.

Cx§m2;m1m3;i1i2
- [(Ty§2><2><m3§i1)2m3><2m3 o (Tz;(ml—l)xmg ><2)27n3><2m3]2(m171)m3X2(m171)m3

o} (E2(m172)7n3 (%9 ((T?(;%szfns);(icz))2m3x2m3 )2(7n171)7n3 % 2(m1—1)m3

Cﬁ;mS;mlmz;iliz

- [(Té;ﬂn ><2><2;i1)2ml x2m1 O (Té;mlx(mz—l)X2)2m1 X2m1]2(m2*1)m1 x2(mg—1)m

o

(Eimy-2ym; @ ((ngx(mg_nw);(icz))zml x2m1 ) pma—1)my g(ma~Umy

Cy;Ml;m2m3;i1i2
= [(Tr;2X2Xm3;i1)QM3X2m3 © (TCC;QX(mz—l)XQ)ngX?mS]2(””2*1)””3 x 2(mg—1)m3

0 (Byma-2ms @ (T cascma) o) gma xams Jatma - 1ms ycgtoma—1yms

Cﬁ;m2;m1m3;i1i2

(Tg§m1 X2X 2511 )2””1 x2m1 O (TQ;THJ x (m3—1) ><2)2m1 x2™M1 ]2(7n371)m1 x9(m3—1)my

[
[©] (E2(m372)m1 ® ((T(T) )(C))2m1 x2"1 )2(7n371)m1 x2(mg—1)mq

;2% (m3—1)x2/ 312

Cz;ml;mzma;i1i2

= [(T:f:;2><m2 x23 i1)2m2x2m2 o (ch;2><m2><(m3—1)>2m2x2m2]2(’713*1)“12 x 2(mg—1)my
o (Eyms-2my @ ((T;T;;szxz);(icz))zmﬂw )atms—1ms o (ms—1ym
Theorem 3.19. For any ms > 2, ms > 2 and 1 < iy, 4y < 22m2,
(3420) sz:;mg;m1+1,m2;i1i2 = [tf;2><m2><2;i1iC:%;m3;m1m2;ii2]2m2><2m27
where ¢ < i < 22m2
Proof. By Remark 3.12 and Theorem 3.11,
Tz;(ml—l)><m2><2 = [Tz;2><m2><2;i1 o P]Tz;(ml—2)><mz><2]7

where 1 < i; < 2%™2, Therefore, by
Cfﬁ;ms;(ml-i-l)mz;hiz
[(Teiacmax2) © Tostmy 1) smax2] © [Batns=syma @ (T 5myc2) ]
[
O[E27”2 ® (E2(m174)m2 ® (T(T) )(C))]

2;2Xma X2/ 3ig

ti;2><m2 X 23111 (Tz;2><m2 x2;i O Tz;(m1—2) X 1Mo ><2)]2mz x 22

[t2:25ma x2:i11 Cmgimymainia |22 x2m2

where 1 < i < 2?™2_ The proof is complete. O



3.4. CONNECTING OPERATOR 109

Notably, (3.4.20) implies Ci.mgimyms:ij 18
Lits2xma x 2inia L2 xma x 25inis ** " La2xma X 2imy imy +1

with ¢, = 7 and 4,41 = 7. Cimgimims:ij consist of all paths of length m, +
1 starting from 7 and ending at j. Indeed, the entries of Ci.ngimym, and
T..(m1+1)xmax2 are the same. However, the arrangements are different.

In (3.4.3) substituting mg for ms + 1 and using (3.3.17), Ag?nl’mmmgﬂ;a
could be represented by

Ai;2><m2><(m3+1);5152A56;2><m2><(m3+1);ﬁ2ﬁ3 T Ai;2><m2><(m3+1);ﬁm15m1+1
m1

(342:1:) H[ai§2><m2><2§0¢j5¢Afc;2><m2 xmg;ﬁ1§2]27”2 Xx2mM2
j=1

where 1 < 31732 < 22 and ;= Oé([ﬁj,ﬂj+1]) and & = 04(31,32> for 1 S] <
mi.
After m; matrix multiplications are executed in (3.4.21),

_ [A(k)

~ m m
1’§m17m27m3+1§061§062]2 2X2M2,

(3422) AW

Tymi,me,m3+lia1 T

where 1 < ap < 2272 and AW

— Tyma,me,m3+1ia;00

could be represented by

gmag(m—1)
. !
(3.4.23) Z K(Z, mima; ajao; k, Z)A(i;)m,l,mz,mg;ocg
=1
which is a linear combination of Ag.)ml ma.maian With the coefficients K (2, myma; anag; k1)

which are products of az2xmyx2i0;6, 1 < J < ma. K(Z, mims; ayag; k, 1) must
be studied in more details. Note that

(3424) Atnl ) - [Ai;ml,mz,mg—i-l;al]sz><2m2

Z;2Xma X (ma+1

where 1 < oy < 2272,

omg(my—1)
(3-4-25) Ai;mhmz,mgﬁ-l;m: Z A:g?znl,mz,mg—l—l;al
k=1
and
gma(my—1) gma(my—1)

(k) _ (k)
(3-4'262 A:ﬁ;ml,mg,(mgﬂ);al_[ Z Ai;ml,mz,(m:a—i—l);al;a2]2m2X2m2’

k=1 k=1
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where 1 < ag < 222, Now, Xn, maumstliaras 1S defined as

(3427)  Xoumstimamstaras = (A i o)

And from (3.4.23) and (3.4.27),

(3.4.28) Xiimi momatLiarias = K(Z, m1ma; a100) Xam, mams+1ias

where

(3.4.29) K(Z, mime; aras) = (k(Z, mims; agas; k, 1)),

1 <k, <2m2(m=l) g g gm2lmi—1) 5 gma(mi=1) matrix. Now

(3.4.30) K(zZ, mima; a102) = Siimamima:anas

must be shown as follows.

Theorem 3.20. For any my > 2, me > 2 and m3 > 2, let Siungmimaiaras D€
given as in (3.4.18). Then,

(3431) X@;m17m2,m3+1;a1 e Sﬁg;mg,;mlmg;alaz Xfﬂ;m1 yM2,M3;02 5

or equivalently, the recursive formula

(k)
Afﬂ;mhmz,(ms-i-l);m
gmg(my—1)
_ E O]
(3432) - [ (Sf;ms;mlm%alaz)klAfc;ml;mg,mg;agh’”? X2M2
=1

where 1 < ay < 222, Moreover, for mg = 1,

gmg(my—1)
k
(3433) A;;r)m,mz,2;a1 == [ Z (Sj;m3;m1m2;a1a2>kl]2m2 X2M2
=1

where 1 < ap < 22 for any 1 < k <2720~ and oy € {1,2,...,2?™2}.

Proof. From (3.4.22), we can represent Az, mo (ms+1)01l0s a5 the following
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patterns

(3.4.34)

and A. Lo as the following patterns
2

imai,ma,msa;

(3.4.35)
By Definition 3.17, we get Sg;g;mlmz;al;az represent the following pattern
(3.4.36)

Therefore, (3.4.32) follows from (3.4.34), (3.4.35) and (3.4.36). And by
(3.4.28), (3.4.31) follows.
Next, (3.4.33) follows easily from (3.4.34) and (3.4.36). O

For any positive integer p > 2, applying Theorem 3.20 p times permits

the elementary patterns of A%szx(mg p) O be expressed as the product of
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a sequence of Si.nyimimoiaiai,, and the elementary patterns in A7)

T;2XmaXxXmsa”®
The elementary pattern in A%xmx(mg +p) is first studied. For any p > 2 and
1 <qg<p-—1, define

(k)
(3'4'37) A:?r;(m1+1),m27m3+p;a1;az;---;aq
= [4%® Jams xma
T3 (m1+1),m2,ma+pia1;az;..;Qgi0g+1 ’

where 1 < g1 < 222, Then AR

By masmatpiassass..sa, COULd e represented as

gmag(my—1) gmg(mq—1) gmag(my—1) P
§ § ’ . . (Ip)
(3'4'@ T (H K(m37 i1, Qi3 li_l’ li))Au’?ﬁ;M1;mz;m3;0¢p
=1 la=1 =1 =1

where ag = « and [y = k can be easily verified.
Therefore, for any p > 1 a generalization for (3.4.24) can be found for

m1 m\p+1 m\p+1 .
Afﬂ;2Xm2x(m3+p) as a (25') x (25Y) matrix

(3439) Aggxmgx(mg—l—p) = [Afc;ml,mz,(m3+p);a1;a2;m§ap]7
where
22m2
(k) _ (k)
(3'4'40) Ai;ml7m27(m3+p);041;042;m;ap - Ai;(m1+1),m2,m3;al;az;~~~;ap’

k=1

In particular, if oy, g, . . ., o € {272 (i—1)+i[1 <0 < 2™2} then Az, mo, (mg+p)ianiaz:..sap
lies on the diagonal of A"} in (3.4.41). Now, define

Z;2Xma X (m3+p)

— (A t
X:?:;ml+1,m2,m3+p;a1;a2;...;o¢p - (Am1+1,m2,m3+p;a1;o¢2;...;o¢p) :

Therefore, Theorem 3.20 can be generalized to the following Theorem.

Theorem 3.21. Forany m; > 2, my > 2, m3 > 2and p > 1, Xsun, momstpassas:..cap
could be represented as

(3'4'4q’i);m3;m1m2;alaz Sﬂ?;m:’,;mlmz;azas e Sf§m3§m1m2§ap71apXj§ml7m27m3§ap

where 1 < a; < 2?2 and 1 <i < p.
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Proof. From (3.4.38), (3.4.28) and (3.4.32),

Ai;ml M2, M3+p;01;02;...;Qp

gmag(my—1) gmg(my—1) gmag(my—1) D
_ § : E § : Ao . (¢p)
- T (H K(x7m37ai—17ai7gi—17£i))A;ﬁ;m17m27m3;ap
=1 lo=1 lp=1  i=1
gmag(my—1) gmg(my—1) gmag(my—1) D
_ § § § : (¢p)
- e (H(Sf§m3§m1m2§ai71Qi72)Ziflzi)A"f:;ml,mz,mg;aP
=1 =1 lp=1  i=1
gmg(my—1) gmg(my—1) gmag(my—1)
= E : E , e E : ((Sﬁﬁ;ms;mlmz;aoal)@o@l (Sﬂ?;ms;mlmz;alaz)flb
=1 =1 tp=1
(€p)
o (Sf§m3§m1m2§ap71ap)prlgp) @31, ma,ma;ap
omao(my—1)
_ E (tp)
- (Si;m3;m1m2;0loa1 Si’§m3§m1m2§a1062 T S@mB;mlmz;apflap)kZp Zymi,me,m3;ap’
0,=1
The proof is complete. O

3.4.2 Lower Bound of Entropy

In this subsection, the connecting operator Cj.,,.m,m, is employed to esti-
mate the lower bound of entropy and in particular, to verify the positivity
of entropy.

Definition 3.22. Let X = (Xy,---, Xj7)!, where X}, are N x N matrices.
Define the summation of X by

N
(3.4.42) X[ =) Xi.
k=1
If Ml = [M;;] is a M x M matrix, then
M M
(3.4.43) IMX| =) M;X;
i=1 j=1

Note that, (3.4.42) implies

9(m1—1)mo
_ } : (k) _
(3444) |X:?:;m1,m2,m3;a| - Ai;ml,mg,mg;a - Aﬁc;ml,mg,mg;a-
k=1

As usual, the set of all matrices with the same order can be partially ordered.
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Definition 3.23. Let M = [M;;] and N = [N;;] be two M x M matrices,

Notably, if Ay > Al then A, > A/ for all n > 2. Therefore, h(Ay) >
h(AL). Hence, the spatial entropy as a function of A, is monotonic with
respect to the partial order >.

Definition 3.24. A P + 1 multiple index
(3.4.45) a, = (ag -+ - papiq)
is called a periodic cycle if
(3.4.46) apy1 = Q.
It is called diagonal cycle if (3.4.46) holds and
(3.4.47) a; € {gmali-Dillsis?rey
for each 1 <1i < P + 1. For a diagonal cycle (3.4.45)
(3.4.48) Qp = Q1;Q;-- - ;Qp
and
ap" = ap;ap;--- ;ap. (n-times)
First, prove the following Lemma.

Lemma 3.25. Let m; > 2, my > 2, P > 1, ap be a diagonal cycle. Then,
for any mg > 1,

m
(3'4‘49§A:ﬁ;éxmgx(m3P+2))
> p(|(S§c;m3;M1mz;a1az Si;ﬂ"ua;m1mz;azoc3 T S:?:;mg;m1m2;apap+1)mgXi;mlmzﬂ;m |)
Proof. Since ap is a periodic cycle, Theorem 3.21 implies
(3'4'50) Xi;mhmmmsp-l-?;dpml

n
(3.4.5) (SaimasmimaiarasStimsmimasazas = * Stmammimaiapapsy) Xasmi ma 2o -

Furthermore ap is diagonal and | Xs.m, momsp+2:0pm1 | = Azimy imsmsP+2:0pm1
lies in the diagonal part of (3.4.41) with mg3 + P = mgP + 2, therefore

(3452) p(Ag?;ll,mz,mgp-i-Q) Z p(|Xi;m1,m27m3P+2;a_pml |>

Therefore, (3.4.49) follows from (3.4.50) and (3.4.52). The proof is complete.
U
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The following Lemma is valuable in studying maximum eigenvalue of
(3.4.52).

Lemma 3.26. For any m; > 2, my > 2,1 < k < 20m=Um2 and oy €
{(i —1)2m2 4+ 4|1 < i <272}, if
(3.4.53) tr(A%)

x;ml,m2,2;a)

— O’
then for all 1 < ¢ < 2(mi—Hmz,

(3454) (Sg%;mg;mlmz;alag)kf = 07

for all ap € {(i — 1)2™ + 4|1 < i < 2™} ie., the k-th rows of matrices
Siimaimima:aias are zeros. Furthermore, for any diagonal cycle ap, let U =

(UrUg - - - Ugmy(my—1) ) be an eigenvector of Sy mime:anas St:msmimazasas * ° * Skmsmymaiapan s
if uy, # 0 for some 1 < k < 20m=Um2 then tr(Agk) ) > 0.

Zyma,me,2;01

Proof. Since AY can be expressed as (3.4.33). Therefore, tr(A(k)

Tym1,me,2;001 i;ml,m2,2;a1)
0 if and only if (3.4.54) holds for all 1 < ¢ < 20m=Ym2  The second part of
the Lemma follows easily from the first part. The proof is complete. O

By Lemma 3.25 and Lemma 3.26, the lower bound of entropy can be
obtained as follows.

Theorem 3.27. Let ajas - - - apay be a diagonal cycle. Then for any m; > 2,
mo Z 27

(3.4.55) h(Asax2x2)

>

mlm2p 10g p(S:?:;mg;mlmg;alocz S:?:;mg;mlmz;azag e Si;mg;mlmg;apa1)~

In particular, if a diagonal cycle ajas - - - apay exists and my; > 2, mgy > 2
such that p(Si;ms;mlmz;ala2 Sﬂ?;ms;mlmmoeas T Sfﬂ;ms;mlmz;aPOtl) > 17 then h(AI;2><2><2) >
0.

Proof. First, by the similar method in the proof of Lemma 2.10 and Lemma
2.11 and Theorem 2.12 in [5] we have

n

. 1
lim sup _(10g /0(| (Si‘;ma;mlmz;alocz Si‘m"ua;m1m2;a2a3 T Sﬂ”c;mg;m1mz;apa1) &mi,ma,2;00 |))

ms3—00 3

(3456) - 108; p(S:?:;mg;mlmz;alocz S:?:;mg;mlmz;azag e Si;mg;mlmg;apa1)~

Now, show that

. 1
lim sup (log p(|(S§c;M3;M1mz;a1a2 Si‘m"ua;m1m2;azoc3 T
mi1me mz—oo 113

h(Agoxox2) >

n

Si‘m%gmnmz;ocpal) Zym1,me,2;a1 |))
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Indeed, from (3.3.18) and (3.4.49),

1
h(A,. = li — 1 Asosmsx(m
( 72><2><2) mzngri)oo (m3P+2)m2 ng( i2xma X ( 3P+2))
1
P 3 mi
N nggloo my(msP + 2)my 108 Pz 2max(ms p+2)
1
2 lim sup — log S:?:m ymima;o o Sﬁcm smima;agas T
m1m2 3 — 00 mg( p(|( ;M33Mm1msa;oy e ;M33m1msa;a20a3
Si‘;ma;mlmz;ocpm)n :?:;m1,m2,2;0c1|))-
And by (3.4.56), the proof is complete. O

Example 3.28. Consider

Tioxoxe = (G ® E)z-

Then, it is easy to check that

Therefore,

1 111
1 111
Ci;m3;22;11 - 1 1 1 1
1 1 11
log 2
h(Trox2x2) > § .

Moreover, in Proposition 3.15 it can be shown that h(T,.2x2x2) = log g where

g= 1+2\/5'
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